import os import torch import streamlit as st from PIL import Image from torchvision import transforms from transformers import AutoModelForImageSegmentation @st.cache_resource def load_model(model_id_or_path="briaai/RMBG-2.0", precision=0, device="cuda"): model = AutoModelForImageSegmentation.from_pretrained( model_id_or_path, trust_remote_code=True ) torch.set_float32_matmul_precision(["high", "highest"][precision]) model.to(device) _ = model.eval() # Data settings image_size = (1024, 1024) transform_image = transforms.Compose( [ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) return model, transform_image def process(image: Image.Image) -> Image.Image: if "RMBG-2.0" not in os.listdir("."): os.system( "modelscope download --model AI-ModelScope/RMBG-2.0 --local_dir RMBG-2.0 --exclude *.onnx *.bin" ) device = "cuda" if torch.cuda.is_available() else "cpu" precision = 0 model, transform = load_model("RMBG-2.0", precision=precision, device=device) image = image.copy() input_images = transform(image).unsqueeze(0).to(device) with torch.no_grad(): preds = model(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image.size) image.putalpha(mask) return mask, image