|
import os
|
|
import torch
|
|
import streamlit as st
|
|
from PIL import Image
|
|
from torchvision import transforms
|
|
from transformers import AutoModelForImageSegmentation
|
|
|
|
|
|
@st.cache_resource
|
|
def load_model(model_id_or_path="briaai/RMBG-2.0", precision=0, device="cuda"):
|
|
model = AutoModelForImageSegmentation.from_pretrained(
|
|
model_id_or_path, trust_remote_code=True
|
|
)
|
|
torch.set_float32_matmul_precision(["high", "highest"][precision])
|
|
model.to(device)
|
|
_ = model.eval()
|
|
|
|
|
|
image_size = (1024, 1024)
|
|
transform_image = transforms.Compose(
|
|
[
|
|
transforms.Resize(image_size),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
]
|
|
)
|
|
|
|
return model, transform_image
|
|
|
|
|
|
def process(image: Image.Image) -> Image.Image:
|
|
if "RMBG-2.0" not in os.listdir("."):
|
|
os.system(
|
|
"modelscope download --model AI-ModelScope/RMBG-2.0 --local_dir RMBG-2.0 --exclude *.onnx *.bin"
|
|
)
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
precision = 0
|
|
model, transform = load_model("RMBG-2.0", precision=precision, device=device)
|
|
image = image.copy()
|
|
input_images = transform(image).unsqueeze(0).to(device)
|
|
with torch.no_grad():
|
|
preds = model(input_images)[-1].sigmoid().cpu()
|
|
pred = preds[0].squeeze()
|
|
pred_pil = transforms.ToPILImage()(pred)
|
|
mask = pred_pil.resize(image.size)
|
|
image.putalpha(mask)
|
|
|
|
return mask, image
|
|
|