Lhumpal commited on
Commit
84cf810
·
verified ·
1 Parent(s): 678f9ca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -112
app.py CHANGED
@@ -1,120 +1,64 @@
1
- # import gradio as gr
2
- # from huggingface_hub import InferenceClient
3
-
4
- # """
5
- # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- # """
7
- # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- # def respond(
11
- # message,
12
- # history: list[tuple[str, str]],
13
- # system_message,
14
- # max_tokens,
15
- # temperature,
16
- # top_p,
17
- # ):
18
- # messages = [{"role": "system", "content": system_message}]
19
-
20
- # for val in history:
21
- # if val[0]:
22
- # messages.append({"role": "user", "content": val[0]})
23
- # if val[1]:
24
- # messages.append({"role": "assistant", "content": val[1]})
25
-
26
- # messages.append({"role": "user", "content": message})
27
-
28
- # response = ""
29
-
30
- # for message in client.chat_completion(
31
- # messages,
32
- # max_tokens=max_tokens,
33
- # stream=True,
34
- # temperature=temperature,
35
- # top_p=top_p,
36
- # ):
37
- # token = message.choices[0].delta.content
38
-
39
- # response += token
40
- # yield response
41
-
42
-
43
- # """
44
- # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- # """
46
- # demo = gr.ChatInterface(
47
- # respond,
48
- # additional_inputs=[
49
- # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- # gr.Slider(
53
- # minimum=0.1,
54
- # maximum=1.0,
55
- # value=0.95,
56
- # step=0.05,
57
- # label="Top-p (nucleus sampling)",
58
- # ),
59
- # ],
60
- # )
61
-
62
-
63
- # if __name__ == "__main__":
64
- # demo.launch()
65
-
66
- # from fastapi import FastAPI, HTTPException
67
- # from fastapi.responses import JSONResponse
68
- # import ollama
69
-
70
- # app = FastAPI()
71
-
72
- # MODEL_NAME = "llama3.2"
73
-
74
- # @app.post("/")
75
- # async def query_model(request: dict):
76
- # """Queries the model with user input."""
77
- # user_input = request.get("user_input", "")
78
- # prompt = f"You are a helpful assistant. Here is the user question: {user_input}"
79
-
80
- # try:
81
- # # Directly using ollama to send the message and get the response.
82
- # response = ollama.chat(MODEL_NAME, messages=[{"role": "user", "content": prompt}])
83
- # assistant_response = response['text'] # Assuming the response contains 'text' key
84
- # return JSONResponse(content={"assistant_response": assistant_response})
85
- # except Exception as e:
86
- # return JSONResponse(content={"error": str(e)}, status_code=500)
87
-
88
-
89
- from fastapi import FastAPI
90
- from fastapi.responses import JSONResponse
91
  from huggingface_hub import InferenceClient
92
 
93
- app = FastAPI()
 
 
94
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
95
 
96
- # Hardcoded parameters
97
- SYSTEM_MESSAGE = "You are a friendly Chatbot."
98
- MAX_TOKENS = 512
99
- TEMPERATURE = 0.7
100
- TOP_P = 0.95
101
 
102
- @app.post("/")
103
- async def chat(request: dict):
104
- user_input = request.get("user_input", "")
105
- prompt = f"You are a helpful assistant. Here is the user question: {user_input}"
106
-
107
- messages = [
108
- {"role": "system", "content": SYSTEM_MESSAGE},
109
- {"role": "user", "content": prompt},
110
- ]
111
 
112
- response = client.chat_completion(
113
- messages,
114
- max_tokens=MAX_TOKENS,
115
- temperature=TEMPERATURE,
116
- top_p=TOP_P,
117
- ).choices[0].message.content
118
 
119
- return JSONResponse(content={"assistant_response": response})
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from huggingface_hub import InferenceClient
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
9
 
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
 
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
 
25
 
26
+ messages.append({"role": "user", "content": message})
27
 
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
+
62
+
63
+ if __name__ == "__main__":
64
+ demo.launch()