Update app.py
Browse files
app.py
CHANGED
@@ -31,12 +31,13 @@ def chunk_text(text, chunk_size=250, chunk_overlap=50):
|
|
31 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
32 |
def build_faiss_vectorstore(chunks):
|
33 |
vectorstore = FAISS.from_texts(chunks, embedding_model)
|
|
|
|
|
34 |
return vectorstore
|
35 |
|
36 |
# Function to retrieve similar text
|
37 |
def retrieve(query, vectorstore, top_k=5):
|
38 |
docs_and_scores = vectorstore.similarity_search_with_score(query=query, k=top_k)
|
39 |
-
print(f"Vectorstore built with {len(vectorstore)} documents.") # Debugging line
|
40 |
return docs_and_scores
|
41 |
|
42 |
class ChatRequest(BaseModel):
|
|
|
31 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
32 |
def build_faiss_vectorstore(chunks):
|
33 |
vectorstore = FAISS.from_texts(chunks, embedding_model)
|
34 |
+
num_documents = len(vectorstore.index_to_docstore_id)
|
35 |
+
print(f"Total number of documents: {num_documents}")
|
36 |
return vectorstore
|
37 |
|
38 |
# Function to retrieve similar text
|
39 |
def retrieve(query, vectorstore, top_k=5):
|
40 |
docs_and_scores = vectorstore.similarity_search_with_score(query=query, k=top_k)
|
|
|
41 |
return docs_and_scores
|
42 |
|
43 |
class ChatRequest(BaseModel):
|