Spaces:
Sleeping
Sleeping
File size: 2,718 Bytes
1adf2fc 4c8613b 1adf2fc 04cab74 1adf2fc 04cab74 1adf2fc 2ff9784 d06641e 1adf2fc 2ff9784 1adf2fc 2ff9784 1adf2fc 2ff9784 1adf2fc 2ff9784 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import streamlit as st
import pandas as pd
import requests
from transformers import MarianMTModel, MarianTokenizer
import io
def fetch_languages(url):
response = requests.get(url)
if response.status_code == 200:
# Convert bytes to a string using decode, then create a file-like object with io.StringIO
csv_content = response.content.decode('utf-8')
df = pd.read_csv(io.StringIO(csv_content), delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all')
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name']
df['ISO 639-1'] = df['ISO 639-1'].str.strip()
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']} - {row['Language Name']}") for index, row in df.iterrows()]
return language_options
else:
return []
# Make sure to replace the URL with the correct one if it has changed
url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md"
language_options = fetch_languages(url)
# Streamlit UI components
st.title("π Translator")
st.write("We use model from [Language Technology Research Group at the University of Helsinki](https://huggingface.co/Helsinki-NLP). For API use please visit [this space](https://huggingface.co/spaces/Lenylvt/Translator-API). π΄ All Language are not Available")
source_language = st.selectbox("1οΈβ£ Select Source Language", options=language_options, format_func=lambda x: x[1])
target_language = st.selectbox("2οΈβ£ Select Target Language", options=language_options, format_func=lambda x: x[1])
text = st.text_area("βοΈ Enter text to translate...", height=150)
def translate_text(text, source_language_code, target_language_code):
model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}"
if source_language_code == target_language_code:
return "π΄ Translation between the same languages is not supported."
try:
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512))
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
except Exception as e:
return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}"
if st.button("π Translate"):
source_language_code, _ = source_language
target_language_code, _ = target_language
translation = translate_text(text, source_language_code, target_language_code)
st.text_area("β¬οΈ Translated Text", value=translation, height=150, key="translation_output")
|