Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- README.md +3 -9
- __pycache__/main.cpython-311.pyc +0 -0
- main.py +139 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: best-model-search
|
3 |
+
app_file: main.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 4.44.1
|
|
|
|
|
6 |
---
|
|
|
|
__pycache__/main.cpython-311.pyc
ADDED
Binary file (5.05 kB). View file
|
|
main.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import CodeAgent, InferenceClientModel, GradioUI, tool
|
2 |
+
from huggingface_hub import HfApi
|
3 |
+
import requests
|
4 |
+
from typing import List, Dict
|
5 |
+
|
6 |
+
@tool
|
7 |
+
def leaderboard_search(query: str) -> str:
|
8 |
+
"""
|
9 |
+
Search Hugging Face Spaces specifically in the model benchmarking category.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
query: The search query to find relevant model benchmarking spaces
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
A formatted string containing search results with space names, descriptions, and additional information
|
16 |
+
"""
|
17 |
+
api_url = "https://huggingface.co/api/spaces"
|
18 |
+
|
19 |
+
search_words = ["arena", "leaderboard", "benchmark"]
|
20 |
+
results = []
|
21 |
+
|
22 |
+
try:
|
23 |
+
for word in search_words:
|
24 |
+
params = {
|
25 |
+
"search": query + " " + word,
|
26 |
+
"full": True # Get full information
|
27 |
+
}
|
28 |
+
|
29 |
+
response = requests.get(api_url, params=params)
|
30 |
+
print(response)
|
31 |
+
|
32 |
+
spaces = response.json()
|
33 |
+
print(spaces)
|
34 |
+
|
35 |
+
if not spaces:
|
36 |
+
continue # Skip if no spaces found for this search word
|
37 |
+
|
38 |
+
for space in spaces:
|
39 |
+
# Extract relevant information
|
40 |
+
space_id = space.get("id", "Unknown")
|
41 |
+
author = space_id.split("/")[0] if "/" in space_id else "Unknown"
|
42 |
+
space_name = space_id.split("/")[1] if "/" in space_id else space_id
|
43 |
+
likes = space.get("likes", 0)
|
44 |
+
|
45 |
+
# Try to get detailed information if available
|
46 |
+
title = space.get("cardData", {}).get("title") if space.get("cardData") else space_name
|
47 |
+
description = space.get("cardData", {}).get("short_description", "No description available") if space.get("cardData") else "No description available"
|
48 |
+
|
49 |
+
# Create formatted result string
|
50 |
+
result = f"π **{title}** ({space_id})\n"
|
51 |
+
result += f" π€ Author: {author}\n"
|
52 |
+
result += f" π {description}\n"
|
53 |
+
result += f" β€οΈ Likes: {likes}\n"
|
54 |
+
result += f" π URL: https://huggingface.co/spaces/{space_id}\n"
|
55 |
+
|
56 |
+
results.append(result)
|
57 |
+
|
58 |
+
if not results:
|
59 |
+
return f"No model benchmarking spaces found for query: '{query}'"
|
60 |
+
|
61 |
+
return "\n".join(results)
|
62 |
+
except requests.exceptions.RequestException as e:
|
63 |
+
return f"Error searching Hugging Face Spaces: {str(e)}"
|
64 |
+
except Exception as e:
|
65 |
+
return f"Unexpected error: {str(e)}"
|
66 |
+
|
67 |
+
except requests.exceptions.RequestException as e:
|
68 |
+
return f"Error searching Hugging Face Spaces: {str(e)}"
|
69 |
+
except Exception as e:
|
70 |
+
return f"Unexpected error: {str(e)}"
|
71 |
+
|
72 |
+
@tool
|
73 |
+
def get_space_content(space_id: str) -> str:
|
74 |
+
"""
|
75 |
+
Get the content of a Hugging Face Space.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
space_id: The Hugging Face Space ID (e.g., "open-llm-leaderboard/open_llm_leaderboard")
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
The space content or error message
|
82 |
+
"""
|
83 |
+
try:
|
84 |
+
# Get the space's README or main content
|
85 |
+
readme_url = f"https://huggingface.co/spaces/{space_id}/raw/main/README.md"
|
86 |
+
response = requests.get(readme_url)
|
87 |
+
|
88 |
+
if response.status_code == 200:
|
89 |
+
return f"Content from {space_id}:\n\n{response.text}"
|
90 |
+
else:
|
91 |
+
# Try to get any available file
|
92 |
+
files_url = f"https://huggingface.co/api/spaces/{space_id}/tree/main"
|
93 |
+
files_response = requests.get(files_url)
|
94 |
+
|
95 |
+
if files_response.status_code == 200:
|
96 |
+
files = files_response.json()
|
97 |
+
return f"Available files in {space_id}:\n" + "\n".join([f"- {file['path']}" for file in files])
|
98 |
+
else:
|
99 |
+
return f"Space {space_id} exists but couldn't retrieve content"
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
return f"Error accessing space {space_id}: {str(e)}"
|
103 |
+
|
104 |
+
|
105 |
+
@tool
|
106 |
+
def get_file_from_space(space_id: str, file_path: str) -> str:
|
107 |
+
"""
|
108 |
+
Get a specific file from a Hugging Face Space.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
space_id: The Hugging Face Space ID
|
112 |
+
file_path: Path to the file in the space
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
The file content or error message
|
116 |
+
"""
|
117 |
+
try:
|
118 |
+
url = f"https://huggingface.co/spaces/{space_id}/raw/main/{file_path}"
|
119 |
+
response = requests.get(url)
|
120 |
+
|
121 |
+
if response.status_code == 200:
|
122 |
+
return f"Content of {file_path} from {space_id}:\n\n{response.text}"
|
123 |
+
else:
|
124 |
+
return f"Couldn't retrieve {file_path} from {space_id}"
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
return f"Error: {str(e)}"
|
128 |
+
|
129 |
+
# Initialize the agent with the leaderboard search and space content tools
|
130 |
+
model = InferenceClientModel()
|
131 |
+
agent = CodeAgent(
|
132 |
+
tools=[leaderboard_search, get_space_content, get_file_from_space],
|
133 |
+
additional_authorized_imports=["json", "requests"],
|
134 |
+
model=model,
|
135 |
+
add_base_tools=False,
|
136 |
+
description="Your job is to find the best possible model for a given task based on relevant leaderboards or arenas. You will be provided with a task description, and you should use the leaderboard tool to find relevant leaderboards or arenas. If you want to inspect the contents of a particular Space (e.g., README or code), use the space_content_tool. Respond with a list of the top models, including their names, scores, and links to their leaderboard pages.",
|
137 |
+
)
|
138 |
+
|
139 |
+
GradioUI(agent).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
smolagents
|
2 |
+
huggingface_hub
|