Spaces:
Sleeping
Sleeping
File size: 8,294 Bytes
99b658c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tutorial from https://www.datacamp.com/tutorial/knowledge-graph-rag"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Chunk 1:\n",
"Sarah is an employee at prismaticAI, a leading technology company based in Westside Valley. She has been working there for the past three years as a software engineer.\n",
"\n",
"Chunk 2:\n",
"Michael is also an employee at prismaticAI, where he works as a data scientist. He joined the company two years ago after completing his graduate studies.\n",
"\n",
"Chunk 3:\n",
"prismaticAI is a well-known technology company that specializes in developing cutting-edge software solutions and artificial intelligence applications. The company has a diverse workforce of talented\n",
"\n",
"Chunk 4:\n",
"of talented individuals from various backgrounds.\n",
"\n",
"Chunk 5:\n",
"Both Sarah and Michael are highly skilled professionals who contribute significantly to prismaticAI's success. They work closely with their respective teams to develop innovative products and\n",
"\n",
"Chunk 6:\n",
"products and services that meet the evolving needs of the company's clients.\n"
]
}
],
"source": [
"from langchain.schema import Document\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"\n",
"# Your raw text\n",
"text = \"\"\"Sarah is an employee at prismaticAI, a leading technology company based in Westside Valley. She has been working there for the past three years as a software engineer.\n",
"Michael is also an employee at prismaticAI, where he works as a data scientist. He joined the company two years ago after completing his graduate studies.\n",
"prismaticAI is a well-known technology company that specializes in developing cutting-edge software solutions and artificial intelligence applications. The company has a diverse workforce of talented individuals from various backgrounds.\n",
"Both Sarah and Michael are highly skilled professionals who contribute significantly to prismaticAI's success. They work closely with their respective teams to develop innovative products and services that meet the evolving needs of the company's clients.\"\"\"\n",
"\n",
"# Wrap in a Document object\n",
"documents = [Document(page_content=text)]\n",
"\n",
"# Split\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=20)\n",
"texts = text_splitter.split_documents(documents)\n",
"\n",
"# Show result\n",
"for i, t in enumerate(texts):\n",
" print(f\"\\nChunk {i+1}:\\n{t.page_content}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/leandratejedor/miniforge3/envs/agents-py11/lib/python3.11/site-packages/langchain_openai/chat_models/base.py:1660: UserWarning: Cannot use method='json_schema' with model gpt-3.5-turbo since it doesn't support OpenAI's Structured Output API. You can see supported models here: https://platform.openai.com/docs/guides/structured-outputs#supported-models. To fix this warning, set `method='function_calling'. Overriding to method='function_calling'.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from langchain_openai import ChatOpenAI\n",
"from langchain_experimental.graph_transformers import LLMGraphTransformer\n",
"\n",
"import os\n",
"from dotenv import load_dotenv\n",
"load_dotenv()\n",
"\n",
"\n",
"# Initialize LLM\n",
"llm = ChatOpenAI(temperature=0)\n",
"\n",
"# Extract Knowledge Graph\n",
"llm_transformer = LLMGraphTransformer(llm=llm)\n",
"graph_documents = llm_transformer.convert_to_graph_documents(texts)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LLM Response: content='Hello! Yes, I am functioning properly. How can I assist you today?' additional_kwargs={'refusal': None} response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 14, 'total_tokens': 31, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'id': 'chatcmpl-BMkHf9pV37IhPnp53mgu9Aqa2yRmm', 'finish_reason': 'stop', 'logprobs': None} id='run-1b031a01-d933-457f-bfe7-2e05110e9dbf-0' usage_metadata={'input_tokens': 14, 'output_tokens': 17, 'total_tokens': 31, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}}\n",
"Test successful! Your LLM is running correctly.\n"
]
}
],
"source": [
"try:\n",
" response = llm.invoke(\"Hello, are you working properly?\")\n",
" print(\"LLM Response:\", response)\n",
" print(\"Test successful! Your LLM is running correctly.\")\n",
"except Exception as e:\n",
" print(\"Error connecting to LLM:\", e)\n",
" print(\"Check your API key and network connection.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.graphs import Neo4jGraph\n",
"\n",
"# Store Knowledge Graph in Neo4j\n",
"graph_store = Neo4jGraph(refresh_schema=False)\n",
"#graph_store.add_graph_documents(graph_documents)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"graph_store.refresh_schema()\n"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import GraphCypherQAChain\n",
"from langchain.prompts import PromptTemplate\n",
"\n",
"\n",
"qa_template = \"\"\"\n",
"Based on the context: {context}\n",
"Answer the question: {question}\n",
"\"\"\"\n",
"qa_prompt = PromptTemplate(template=qa_template, input_variables=[\"context\", \"question\"])\n",
"\n",
"chain = GraphCypherQAChain.from_llm(\n",
" graph=graph_store,\n",
" cypher_llm=llm,\n",
" qa_llm=llm,\n",
" qa_prompt=qa_prompt,\n",
" #cypher_prompt=CYPHER_GENERATION_PROMPT,\n",
" verbose=True,\n",
" return_intermediate_steps=True,\n",
" allow_dangerous_requests=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new GraphCypherQAChain chain...\u001b[0m\n",
"Generated Cypher:\n",
"\u001b[32;1m\u001b[1;3mMATCH (p1:Person {id: \"Michael\"})-[:EMPLOYEE]->(o:Organization)<-[:EMPLOYEE]-(p2:Person {id: \"Sarah\"})\n",
"RETURN o\u001b[0m\n",
"Full Context:\n",
"\u001b[32;1m\u001b[1;3m[]\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"It is not possible to determine if Michael works for the same company as Sarah without more information.\n"
]
}
],
"source": [
"response = chain.invoke({\"query\": \"Does Michael work for the same company as Sarah?\"})\n",
"print(response['result'])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "agents-py11",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|