File size: 8,294 Bytes
99b658c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Tutorial from https://www.datacamp.com/tutorial/knowledge-graph-rag"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Chunk 1:\n",
      "Sarah is an employee at prismaticAI, a leading technology company based in Westside Valley. She has been working there for the past three years as a software engineer.\n",
      "\n",
      "Chunk 2:\n",
      "Michael is also an employee at prismaticAI, where he works as a data scientist. He joined the company two years ago after completing his graduate studies.\n",
      "\n",
      "Chunk 3:\n",
      "prismaticAI is a well-known technology company that specializes in developing cutting-edge software solutions and artificial intelligence applications. The company has a diverse workforce of talented\n",
      "\n",
      "Chunk 4:\n",
      "of talented individuals from various backgrounds.\n",
      "\n",
      "Chunk 5:\n",
      "Both Sarah and Michael are highly skilled professionals who contribute significantly to prismaticAI's success. They work closely with their respective teams to develop innovative products and\n",
      "\n",
      "Chunk 6:\n",
      "products and services that meet the evolving needs of the company's clients.\n"
     ]
    }
   ],
   "source": [
    "from langchain.schema import Document\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "\n",
    "# Your raw text\n",
    "text = \"\"\"Sarah is an employee at prismaticAI, a leading technology company based in Westside Valley. She has been working there for the past three years as a software engineer.\n",
    "Michael is also an employee at prismaticAI, where he works as a data scientist. He joined the company two years ago after completing his graduate studies.\n",
    "prismaticAI is a well-known technology company that specializes in developing cutting-edge software solutions and artificial intelligence applications. The company has a diverse workforce of talented individuals from various backgrounds.\n",
    "Both Sarah and Michael are highly skilled professionals who contribute significantly to prismaticAI's success. They work closely with their respective teams to develop innovative products and services that meet the evolving needs of the company's clients.\"\"\"\n",
    "\n",
    "# Wrap in a Document object\n",
    "documents = [Document(page_content=text)]\n",
    "\n",
    "# Split\n",
    "text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=20)\n",
    "texts = text_splitter.split_documents(documents)\n",
    "\n",
    "# Show result\n",
    "for i, t in enumerate(texts):\n",
    "    print(f\"\\nChunk {i+1}:\\n{t.page_content}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/leandratejedor/miniforge3/envs/agents-py11/lib/python3.11/site-packages/langchain_openai/chat_models/base.py:1660: UserWarning: Cannot use method='json_schema' with model gpt-3.5-turbo since it doesn't support OpenAI's Structured Output API. You can see supported models here: https://platform.openai.com/docs/guides/structured-outputs#supported-models. To fix this warning, set `method='function_calling'. Overriding to method='function_calling'.\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "from langchain_openai import ChatOpenAI\n",
    "from langchain_experimental.graph_transformers import LLMGraphTransformer\n",
    "\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "load_dotenv()\n",
    "\n",
    "\n",
    "# Initialize LLM\n",
    "llm = ChatOpenAI(temperature=0)\n",
    "\n",
    "# Extract Knowledge Graph\n",
    "llm_transformer = LLMGraphTransformer(llm=llm)\n",
    "graph_documents = llm_transformer.convert_to_graph_documents(texts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "LLM Response: content='Hello! Yes, I am functioning properly. How can I assist you today?' additional_kwargs={'refusal': None} response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 14, 'total_tokens': 31, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'id': 'chatcmpl-BMkHf9pV37IhPnp53mgu9Aqa2yRmm', 'finish_reason': 'stop', 'logprobs': None} id='run-1b031a01-d933-457f-bfe7-2e05110e9dbf-0' usage_metadata={'input_tokens': 14, 'output_tokens': 17, 'total_tokens': 31, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}}\n",
      "Test successful! Your LLM is running correctly.\n"
     ]
    }
   ],
   "source": [
    "try:\n",
    "    response = llm.invoke(\"Hello, are you working properly?\")\n",
    "    print(\"LLM Response:\", response)\n",
    "    print(\"Test successful! Your LLM is running correctly.\")\n",
    "except Exception as e:\n",
    "    print(\"Error connecting to LLM:\", e)\n",
    "    print(\"Check your API key and network connection.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.graphs import Neo4jGraph\n",
    "\n",
    "# Store Knowledge Graph in Neo4j\n",
    "graph_store = Neo4jGraph(refresh_schema=False)\n",
    "#graph_store.add_graph_documents(graph_documents)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [],
   "source": [
    "graph_store.refresh_schema()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import GraphCypherQAChain\n",
    "from langchain.prompts import PromptTemplate\n",
    "\n",
    "\n",
    "qa_template = \"\"\"\n",
    "Based on the context: {context}\n",
    "Answer the question: {question}\n",
    "\"\"\"\n",
    "qa_prompt = PromptTemplate(template=qa_template, input_variables=[\"context\", \"question\"])\n",
    "\n",
    "chain = GraphCypherQAChain.from_llm(\n",
    "    graph=graph_store,\n",
    "    cypher_llm=llm,\n",
    "    qa_llm=llm,\n",
    "    qa_prompt=qa_prompt,\n",
    "    #cypher_prompt=CYPHER_GENERATION_PROMPT,\n",
    "    verbose=True,\n",
    "    return_intermediate_steps=True,\n",
    "    allow_dangerous_requests=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new GraphCypherQAChain chain...\u001b[0m\n",
      "Generated Cypher:\n",
      "\u001b[32;1m\u001b[1;3mMATCH (p1:Person {id: \"Michael\"})-[:EMPLOYEE]->(o:Organization)<-[:EMPLOYEE]-(p2:Person {id: \"Sarah\"})\n",
      "RETURN o\u001b[0m\n",
      "Full Context:\n",
      "\u001b[32;1m\u001b[1;3m[]\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "It is not possible to determine if Michael works for the same company as Sarah without more information.\n"
     ]
    }
   ],
   "source": [
    "response = chain.invoke({\"query\": \"Does Michael work for the same company as Sarah?\"})\n",
    "print(response['result'])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "agents-py11",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}