File size: 10,916 Bytes
519c3e7 35f7ed2 519c3e7 06aadc0 519c3e7 35f7ed2 cc8fe19 519c3e7 5b4b6c8 35f7ed2 519c3e7 35f7ed2 519c3e7 35f7ed2 519c3e7 f8c79da 519c3e7 f8c79da 912199b 519c3e7 5b4b6c8 2facc44 519c3e7 5b4b6c8 519c3e7 5b4b6c8 519c3e7 5b4b6c8 519c3e7 8a255f7 519c3e7 0f6e5cd 2facc44 519c3e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import streamlit as st
from pypdf import PdfReader
# import replicate
import os
from pathlib import Path
from dotenv import load_dotenv
import pickle
import timeit
from PIL import Image
import datetime
import base64
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts.prompt import PromptTemplate
from langchain.llms import LlamaCpp
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.chat_models import ChatOpenAI
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.agents.agent_toolkits import create_conversational_retrieval_agent
from langchain.utilities import SerpAPIWrapper
from utils import build_embedding_model, build_llm
from utils import load_retriver,load_vectorstore, load_conversational_retrievel_chain
load_dotenv()
# Getting current timestamp to keep track of historical conversations
current_timestamp = datetime.datetime.now()
timestamp_string = current_timestamp.strftime("%Y-%m-%d %H:%M:%S")
#Directories path
persist_directory= "Database/PDF_HTML_CHROMA_DB"
all_docs_pkl_directory= 'Database/text_chunks_html_pdf.pkl'
# Initliazing sesstion states in Streamlit to cache different stuffs like model iniitialization and there by avoid re-running of alredy initialized stuffs over and again.
if "llm" not in st.session_state:
st.session_state["llm"] = build_llm()
if "embeddings" not in st.session_state:
st.session_state["embeddings"] = build_embedding_model()
if "vector_db" not in st.session_state:
st.session_state["vector_db"] = load_vectorstore(persist_directory=persist_directory, embeddings=st.session_state["embeddings"])
# if "text_chunks" not in st.session_state:
# st.session_state["text_chunks"] = load_text_chunks(text_chunks_pkl_dir=all_docs_pkl_directory)
if "retriever" not in st.session_state:
st.session_state["retriever"] = load_retriver(chroma_vectorstore=st.session_state["vector_db"])
if "conversation_chain" not in st.session_state:
st.session_state["conversation_chain"] = load_conversational_retrievel_chain(retriever=st.session_state["retriever"], llm=st.session_state["llm"])
# App title
st.set_page_config(
page_title="OMP Search Bot",
layout="wide",
initial_sidebar_state="expanded",
)
st.markdown("""
<style>
.block-container {
padding-top: 2.2rem}
</style>
""", unsafe_allow_html=True)
# To get header in the App
col1, col2= st.columns(2)
title1 = """
<p style="font-size: 26px;text-align: right; color: #0C3453; font-weight: bold">OPM Retirement Services Assistant</p>
"""
def clear_chat_history():
"""
Clear chat and start new chat
"""
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]
#loading OPM logo
file_ = open("opm_logo.png", "rb")
contents = file_.read()
data_url = base64.b64encode(contents).decode("utf-8")
file_.close()
st.markdown(
f"""
<div style="background-color: white; padding: 15px; border-radius: 10px;">
<div style="display: flex; justify-content: space-between;">
<div>
<img src="data:image/png;base64,{data_url}" style="max-width: 100%;" alt="OPM Logo" />
</div>
<div style="flex: 1; padding: 15px;">
{title1}
""",
unsafe_allow_html=True
)
st.write("")
st.write('<p style="color: #B0B0B0;margin: 0;">OPM is here to help you transition from serving the American people to enjoying your retirement. This retirement services assistant shows our commitment to supporting new and existing retirees throughout the retirement journey. Our assistant is trained on 1500+ documents related to OPM retirement services and can answer your questions in conversational style. Just ask away..</p>', unsafe_allow_html=True)
st.markdown("""---""")
text_html = """
<p style="font-size: 24px; text-align: center; color:blue; margin: 0;">
Type your question below in conversational style language.
</p>
<p style="font-size: 18px; text-align: center; color: blue; margin: 0;">
Sample Questions:<br>
will I get paid for my unused annual leave? <br>
what annuity estimates do I need? <br>
what are interim benefits?
</p>
"""
st.write(text_html, unsafe_allow_html=True)
with st.sidebar:
st.subheader("")
if st.session_state["vector_db"] and st.session_state["llm"]:
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?", "Source":""}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
if message["Source"]=="":
st.write("")
else:
with st.expander("source"):
for idx, item in enumerate(message["Source"]):
st.markdown(item["Page"])
st.markdown(item["Source"])
st.markdown(item["page_content"])
st.write("---")
# Initialize the session state to store chat history
if "stored_session" not in st.session_state:
st.session_state["stored_session"] = []
# Create a list to store expanders
if "expanders" not in st.session_state:
st.session_state["expanders"] = []
# Define a function to add a new chat expander
def add_chat_expander(chat_history):
current_timestamp = datetime.datetime.now()
timestamp_string = current_timestamp.strftime("%Y-%m-%d %H:%M:%S")
st.session_state["expanders"].append({"timestamp": timestamp_string, "chat_history": chat_history})
def clear_chat_history():
"""
To remove existing chat history and start new conversation
"""
stored_session = []
for dict_message in st.session_state.messages:
if dict_message["role"] == "user":
string_dialogue = "User: " + dict_message["content"] + "\n\n"
st.session_state["stored_session"].append(string_dialogue)
else:
string_dialogue = "Assistant: " + dict_message["content"] + "\n\n"
st.session_state["stored_session"].append(string_dialogue)
stored_session.append(string_dialogue)
# Add a new chat expander
add_chat_expander(stored_session)
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?", "Source":""}]
st.sidebar.button('New chat', on_click=clear_chat_history, use_container_width=True)
st.sidebar.text("")
st.sidebar.write('<p style="font-size: 16px;text-align: center; color: #727477; font-weight: bold">Chat history</p>', unsafe_allow_html=True)
# Display existing chat expanders
for expander_info in st.session_state["expanders"]:
with st.sidebar.expander("Conversation ended at:"+"\n\n"+expander_info["timestamp"]):
for message in expander_info["chat_history"]:
if message.startswith("User:"):
st.write(f'<span style="color: #EF6A6A;">{message}</span>', unsafe_allow_html=True)
elif message.startswith("Assistant:"):
st.write(f'<span style="color: #F7BD45;">{message}</span>', unsafe_allow_html=True)
else:
st.write(message)
def generate_llm_response(conversation_chain, prompt_input):
# output= conversation_chain({'question': prompt_input})
res = conversation_chain(prompt_input)
return res['result']
# User-provided prompt
if prompt := st.chat_input(disabled= not st.session_state["vector_db"]):
st.session_state.messages.append({"role": "user", "content": prompt, "Source":""})
with st.chat_message("user"):
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Searching..."):
start = timeit.default_timer()
response = generate_llm_response(conversation_chain=st.session_state["conversation_chain"], prompt_input=prompt)
placeholder = st.empty()
full_response = ''
for item in response:
full_response += item
placeholder.markdown(full_response)
if response:
st.text("-------------------------------------")
docs= st.session_state["retriever"].get_relevant_documents(prompt)
source_doc_list= []
for doc in docs:
source_doc_list.append(doc.dict())
merged_source_doc= []
with st.expander("source"):
for idx, item in enumerate(source_doc_list):
source_doc = {"Page": f"Source {idx + 1}", "Source": f"**Source:** {item['metadata']['source'].split('/')[-1]}",
"page_content":item["page_content"]}
merged_source_doc.append(source_doc)
st.markdown(f"Source {idx + 1}")
st.markdown(f"**Source:** {item['metadata']['source'].split('/')[-1]}")
st.markdown(item["page_content"])
st.write("---") # Add a separator between entries
message = {"role": "assistant", "content": full_response, "Source":merged_source_doc}
st.session_state.messages.append(message)
st.markdown("👍 👎 Create Ticket")
# else:
# with st.expander("source"):
# message = {"role": "assistant", "content": full_response, "Source":""}
# st.session_state.messages.append(message)
end = timeit.default_timer()
print(f"Time to retrieve response: {end - start}")
|