File size: 3,153 Bytes
8e00884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0112880
 
 
 
6f67f6d
0112880
 
 
 
 
 
 
 
 
8e00884
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import json
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

def predict_NuExtract(model, tokenizer, text, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
    template = json.dumps(json.loads(template), indent=4)
    prompt = f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"""

    with torch.no_grad():
        encoding = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device)
        pred_ids = model.generate(**encoding, max_new_tokens=max_new_tokens)
        output = tokenizer.decode(pred_ids[0], skip_special_tokens=True)

    return output.split("<|output|>")[1] if "<|output|>" in output else output

def generate_response(extracted_data):
    try:
        data = json.loads(extracted_data)
        entities = data.get("Entities", {})
        response = (f"I checked the logs for the user. This user was accessing the app through our {entities.get('App version', 'Unknown')} app "
                    f"(Wind Creek Casino app). {entities.get('Issue', 'an issue occurred')} on {entities.get('Date', 'an unknown date')} "
                    f"because {entities.get('Reason', 'no specific reason provided')}. This is working as designed, "
                    f"{', '.join(entities.get('Action', ['no action required']))}.")
        return response
    except json.JSONDecodeError:
        return "Error in processing extracted data. Please check the input format."

model_name = "numind/NuExtract-v1.5"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

def extract_information(text, template):
    extracted_data = predict_NuExtract(model, tokenizer, text, template)
    return generate_response(extracted_data)

demo = gr.Interface(
    fn=extract_information,
    inputs=[
        gr.Textbox(label="Enter Text", lines=5, placeholder="Enter text to extract information from..."),
        gr.Textbox(label="Enter Template", lines=10, placeholder="Enter JSON extraction template...")
    ],
    outputs=gr.Textbox(label="Generated Response"),
    title="NuExtract Information Extractor",
    description="Enter a text and a JSON template to extract structured information and generate a response using NuExtract.",
)


# Patch Phi-3.5-mini-instruct's `prepare_inputs_for_generation`
def patched_prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
    if past_key_values is not None:
        max_cache_length = len(past_key_values[0][0])
    else:
        max_cache_length = None
    return self._default_prepare_inputs_for_generation(input_ids, past_key_values, **kwargs)

# Apply the patch dynamically
if hasattr(model, "prepare_inputs_for_generation"):
    model._default_prepare_inputs_for_generation = model.prepare_inputs_for_generation
    model.prepare_inputs_for_generation = patched_prepare_inputs_for_generation.__get__(model)

demo.launch(share=True)