# Copyright 2024 The Lightricks team and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch import torch.nn as nn from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import FromOriginalModelMixin from ...utils.accelerate_utils import apply_forward_hook from ..activations import get_activation from ..modeling_outputs import AutoencoderKLOutput from ..modeling_utils import ModelMixin from ..normalization import RMSNorm from .vae import DecoderOutput, DiagonalGaussianDistribution class LTXCausalConv3d(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int, int]] = 3, stride: Union[int, Tuple[int, int, int]] = 1, dilation: Union[int, Tuple[int, int, int]] = 1, groups: int = 1, padding_mode: str = "zeros", is_causal: bool = True, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.is_causal = is_causal self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size) dilation = dilation if isinstance(dilation, tuple) else (dilation, 1, 1) stride = stride if isinstance(stride, tuple) else (stride, stride, stride) height_pad = self.kernel_size[1] // 2 width_pad = self.kernel_size[2] // 2 padding = (0, height_pad, width_pad) self.conv = nn.Conv3d( in_channels, out_channels, self.kernel_size, stride=stride, dilation=dilation, groups=groups, padding=padding, padding_mode=padding_mode, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: time_kernel_size = self.kernel_size[0] if self.is_causal: pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, time_kernel_size - 1, 1, 1)) hidden_states = torch.concatenate([pad_left, hidden_states], dim=2) else: pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1)) pad_right = hidden_states[:, :, -1:, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1)) hidden_states = torch.concatenate([pad_left, hidden_states, pad_right], dim=2) hidden_states = self.conv(hidden_states) return hidden_states class LTXResnetBlock3d(nn.Module): r""" A 3D ResNet block used in the LTX model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. dropout (`float`, defaults to `0.0`): Dropout rate. eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. elementwise_affine (`bool`, defaults to `False`): Whether to enable elementwise affinity in the normalization layers. non_linearity (`str`, defaults to `"swish"`): Activation function to use. conv_shortcut (bool, defaults to `False`): Whether or not to use a convolution shortcut. """ def __init__( self, in_channels: int, out_channels: Optional[int] = None, dropout: float = 0.0, eps: float = 1e-6, elementwise_affine: bool = False, non_linearity: str = "swish", is_causal: bool = True, ): super().__init__() out_channels = out_channels or in_channels self.nonlinearity = get_activation(non_linearity) self.norm1 = RMSNorm(in_channels, eps=1e-8, elementwise_affine=elementwise_affine) self.conv1 = LTXCausalConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal ) self.norm2 = RMSNorm(out_channels, eps=1e-8, elementwise_affine=elementwise_affine) self.dropout = nn.Dropout(dropout) self.conv2 = LTXCausalConv3d( in_channels=out_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal ) self.norm3 = None self.conv_shortcut = None if in_channels != out_channels: self.norm3 = nn.LayerNorm(in_channels, eps=eps, elementwise_affine=True, bias=True) self.conv_shortcut = LTXCausalConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_causal=is_causal ) def forward(self, inputs: torch.Tensor) -> torch.Tensor: hidden_states = inputs hidden_states = self.norm1(hidden_states.movedim(1, -1)).movedim(-1, 1) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states.movedim(1, -1)).movedim(-1, 1) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.norm3 is not None: inputs = self.norm3(inputs.movedim(1, -1)).movedim(-1, 1) if self.conv_shortcut is not None: inputs = self.conv_shortcut(inputs) hidden_states = hidden_states + inputs return hidden_states class LTXUpsampler3d(nn.Module): def __init__( self, in_channels: int, stride: Union[int, Tuple[int, int, int]] = 1, is_causal: bool = True, ) -> None: super().__init__() self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride) out_channels = in_channels * stride[0] * stride[1] * stride[2] self.conv = LTXCausalConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, is_causal=is_causal, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = hidden_states.shape hidden_states = self.conv(hidden_states) hidden_states = hidden_states.reshape( batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width ) hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3) hidden_states = hidden_states[:, :, self.stride[0] - 1 :] return hidden_states class LTXDownBlock3D(nn.Module): r""" Down block used in the LTX model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. num_layers (`int`, defaults to `1`): Number of resnet layers. dropout (`float`, defaults to `0.0`): Dropout rate. resnet_eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. resnet_act_fn (`str`, defaults to `"swish"`): Activation function to use. spatio_temporal_scale (`bool`, defaults to `True`): Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension. Whether or not to downsample across temporal dimension. is_causal (`bool`, defaults to `True`): Whether this layer behaves causally (future frames depend only on past frames) or not. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", spatio_temporal_scale: bool = True, is_causal: bool = True, ): super().__init__() out_channels = out_channels or in_channels resnets = [] for _ in range(num_layers): resnets.append( LTXResnetBlock3d( in_channels=in_channels, out_channels=in_channels, dropout=dropout, eps=resnet_eps, non_linearity=resnet_act_fn, is_causal=is_causal, ) ) self.resnets = nn.ModuleList(resnets) self.downsamplers = None if spatio_temporal_scale: self.downsamplers = nn.ModuleList( [ LTXCausalConv3d( in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=(2, 2, 2), is_causal=is_causal, ) ] ) self.conv_out = None if in_channels != out_channels: self.conv_out = LTXResnetBlock3d( in_channels=in_channels, out_channels=out_channels, dropout=dropout, eps=resnet_eps, non_linearity=resnet_act_fn, is_causal=is_causal, ) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: r"""Forward method of the `LTXDownBlock3D` class.""" for i, resnet in enumerate(self.resnets): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states) else: hidden_states = resnet(hidden_states) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) if self.conv_out is not None: hidden_states = self.conv_out(hidden_states) return hidden_states # Adapted from diffusers.models.autoencoders.autoencoder_kl_cogvideox.CogVideoMidBlock3d class LTXMidBlock3d(nn.Module): r""" A middle block used in the LTX model. Args: in_channels (`int`): Number of input channels. num_layers (`int`, defaults to `1`): Number of resnet layers. dropout (`float`, defaults to `0.0`): Dropout rate. resnet_eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. resnet_act_fn (`str`, defaults to `"swish"`): Activation function to use. is_causal (`bool`, defaults to `True`): Whether this layer behaves causally (future frames depend only on past frames) or not. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int, num_layers: int = 1, dropout: float = 0.0, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", is_causal: bool = True, ) -> None: super().__init__() resnets = [] for _ in range(num_layers): resnets.append( LTXResnetBlock3d( in_channels=in_channels, out_channels=in_channels, dropout=dropout, eps=resnet_eps, non_linearity=resnet_act_fn, is_causal=is_causal, ) ) self.resnets = nn.ModuleList(resnets) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: r"""Forward method of the `LTXMidBlock3D` class.""" for i, resnet in enumerate(self.resnets): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states) else: hidden_states = resnet(hidden_states) return hidden_states class LTXUpBlock3d(nn.Module): r""" Up block used in the LTX model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. num_layers (`int`, defaults to `1`): Number of resnet layers. dropout (`float`, defaults to `0.0`): Dropout rate. resnet_eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. resnet_act_fn (`str`, defaults to `"swish"`): Activation function to use. spatio_temporal_scale (`bool`, defaults to `True`): Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension. Whether or not to downsample across temporal dimension. is_causal (`bool`, defaults to `True`): Whether this layer behaves causally (future frames depend only on past frames) or not. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", spatio_temporal_scale: bool = True, is_causal: bool = True, ): super().__init__() out_channels = out_channels or in_channels self.conv_in = None if in_channels != out_channels: self.conv_in = LTXResnetBlock3d( in_channels=in_channels, out_channels=out_channels, dropout=dropout, eps=resnet_eps, non_linearity=resnet_act_fn, is_causal=is_causal, ) self.upsamplers = None if spatio_temporal_scale: self.upsamplers = nn.ModuleList([LTXUpsampler3d(out_channels, stride=(2, 2, 2), is_causal=is_causal)]) resnets = [] for _ in range(num_layers): resnets.append( LTXResnetBlock3d( in_channels=out_channels, out_channels=out_channels, dropout=dropout, eps=resnet_eps, non_linearity=resnet_act_fn, is_causal=is_causal, ) ) self.resnets = nn.ModuleList(resnets) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.conv_in is not None: hidden_states = self.conv_in(hidden_states) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) for i, resnet in enumerate(self.resnets): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states) else: hidden_states = resnet(hidden_states) return hidden_states class LTXEncoder3d(nn.Module): r""" The `LTXEncoder3D` layer of a variational autoencoder that encodes input video samples to its latent representation. Args: in_channels (`int`, defaults to 3): Number of input channels. out_channels (`int`, defaults to 128): Number of latent channels. block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`): The number of output channels for each block. spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`: Whether a block should contain spatio-temporal downscaling layers or not. layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`): The number of layers per block. patch_size (`int`, defaults to `4`): The size of spatial patches. patch_size_t (`int`, defaults to `1`): The size of temporal patches. resnet_norm_eps (`float`, defaults to `1e-6`): Epsilon value for ResNet normalization layers. is_causal (`bool`, defaults to `True`): Whether this layer behaves causally (future frames depend only on past frames) or not. """ def __init__( self, in_channels: int = 3, out_channels: int = 128, block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False), layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4), patch_size: int = 4, patch_size_t: int = 1, resnet_norm_eps: float = 1e-6, is_causal: bool = True, ): super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t self.in_channels = in_channels * patch_size**2 output_channel = block_out_channels[0] self.conv_in = LTXCausalConv3d( in_channels=self.in_channels, out_channels=output_channel, kernel_size=3, stride=1, is_causal=is_causal, ) # down blocks num_block_out_channels = len(block_out_channels) self.down_blocks = nn.ModuleList([]) for i in range(num_block_out_channels): input_channel = output_channel output_channel = block_out_channels[i + 1] if i + 1 < num_block_out_channels else block_out_channels[i] down_block = LTXDownBlock3D( in_channels=input_channel, out_channels=output_channel, num_layers=layers_per_block[i], resnet_eps=resnet_norm_eps, spatio_temporal_scale=spatio_temporal_scaling[i], is_causal=is_causal, ) self.down_blocks.append(down_block) # mid block self.mid_block = LTXMidBlock3d( in_channels=output_channel, num_layers=layers_per_block[-1], resnet_eps=resnet_norm_eps, is_causal=is_causal, ) # out self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False) self.conv_act = nn.SiLU() self.conv_out = LTXCausalConv3d( in_channels=output_channel, out_channels=out_channels + 1, kernel_size=3, stride=1, is_causal=is_causal ) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: r"""The forward method of the `LTXEncoder3D` class.""" p = self.patch_size p_t = self.patch_size_t batch_size, num_channels, num_frames, height, width = hidden_states.shape post_patch_num_frames = num_frames // p_t post_patch_height = height // p post_patch_width = width // p hidden_states = hidden_states.reshape( batch_size, num_channels, post_patch_num_frames, p_t, post_patch_height, p, post_patch_width, p ) # Thanks for driving me insane with the weird patching order :( hidden_states = hidden_states.permute(0, 1, 3, 7, 5, 2, 4, 6).flatten(1, 4) hidden_states = self.conv_in(hidden_states) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward for down_block in self.down_blocks: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), hidden_states) hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), hidden_states) else: for down_block in self.down_blocks: hidden_states = down_block(hidden_states) hidden_states = self.mid_block(hidden_states) hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) hidden_states = self.conv_act(hidden_states) hidden_states = self.conv_out(hidden_states) last_channel = hidden_states[:, -1:] last_channel = last_channel.repeat(1, hidden_states.size(1) - 2, 1, 1, 1) hidden_states = torch.cat([hidden_states, last_channel], dim=1) return hidden_states class LTXDecoder3d(nn.Module): r""" The `LTXDecoder3d` layer of a variational autoencoder that decodes its latent representation into an output sample. Args: in_channels (`int`, defaults to 128): Number of latent channels. out_channels (`int`, defaults to 3): Number of output channels. block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`): The number of output channels for each block. spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`: Whether a block should contain spatio-temporal upscaling layers or not. layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`): The number of layers per block. patch_size (`int`, defaults to `4`): The size of spatial patches. patch_size_t (`int`, defaults to `1`): The size of temporal patches. resnet_norm_eps (`float`, defaults to `1e-6`): Epsilon value for ResNet normalization layers. is_causal (`bool`, defaults to `False`): Whether this layer behaves causally (future frames depend only on past frames) or not. """ def __init__( self, in_channels: int = 128, out_channels: int = 3, block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False), layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4), patch_size: int = 4, patch_size_t: int = 1, resnet_norm_eps: float = 1e-6, is_causal: bool = False, ) -> None: super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t self.out_channels = out_channels * patch_size**2 block_out_channels = tuple(reversed(block_out_channels)) spatio_temporal_scaling = tuple(reversed(spatio_temporal_scaling)) layers_per_block = tuple(reversed(layers_per_block)) output_channel = block_out_channels[0] self.conv_in = LTXCausalConv3d( in_channels=in_channels, out_channels=output_channel, kernel_size=3, stride=1, is_causal=is_causal ) self.mid_block = LTXMidBlock3d( in_channels=output_channel, num_layers=layers_per_block[0], resnet_eps=resnet_norm_eps, is_causal=is_causal ) # up blocks num_block_out_channels = len(block_out_channels) self.up_blocks = nn.ModuleList([]) for i in range(num_block_out_channels): input_channel = output_channel output_channel = block_out_channels[i] up_block = LTXUpBlock3d( in_channels=input_channel, out_channels=output_channel, num_layers=layers_per_block[i + 1], resnet_eps=resnet_norm_eps, spatio_temporal_scale=spatio_temporal_scaling[i], is_causal=is_causal, ) self.up_blocks.append(up_block) # out self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False) self.conv_act = nn.SiLU() self.conv_out = LTXCausalConv3d( in_channels=output_channel, out_channels=self.out_channels, kernel_size=3, stride=1, is_causal=is_causal ) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv_in(hidden_states) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), hidden_states) for up_block in self.up_blocks: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), hidden_states) else: hidden_states = self.mid_block(hidden_states) for up_block in self.up_blocks: hidden_states = up_block(hidden_states) hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) hidden_states = self.conv_act(hidden_states) hidden_states = self.conv_out(hidden_states) p = self.patch_size p_t = self.patch_size_t batch_size, num_channels, num_frames, height, width = hidden_states.shape hidden_states = hidden_states.reshape(batch_size, -1, p_t, p, p, num_frames, height, width) hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 4, 7, 3).flatten(6, 7).flatten(4, 5).flatten(2, 3) return hidden_states class AutoencoderKLLTXVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin): r""" A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in [LTX](https://huggingface.co/Lightricks/LTX-Video). This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Args: in_channels (`int`, defaults to `3`): Number of input channels. out_channels (`int`, defaults to `3`): Number of output channels. latent_channels (`int`, defaults to `128`): Number of latent channels. block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`): The number of output channels for each block. spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`: Whether a block should contain spatio-temporal downscaling or not. layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`): The number of layers per block. patch_size (`int`, defaults to `4`): The size of spatial patches. patch_size_t (`int`, defaults to `1`): The size of temporal patches. resnet_norm_eps (`float`, defaults to `1e-6`): Epsilon value for ResNet normalization layers. scaling_factor (`float`, *optional*, defaults to `1.0`): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. encoder_causal (`bool`, defaults to `True`): Whether the encoder should behave causally (future frames depend only on past frames) or not. decoder_causal (`bool`, defaults to `False`): Whether the decoder should behave causally (future frames depend only on past frames) or not. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, latent_channels: int = 128, block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False), layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4), patch_size: int = 4, patch_size_t: int = 1, resnet_norm_eps: float = 1e-6, scaling_factor: float = 1.0, encoder_causal: bool = True, decoder_causal: bool = False, ) -> None: super().__init__() self.encoder = LTXEncoder3d( in_channels=in_channels, out_channels=latent_channels, block_out_channels=block_out_channels, spatio_temporal_scaling=spatio_temporal_scaling, layers_per_block=layers_per_block, patch_size=patch_size, patch_size_t=patch_size_t, resnet_norm_eps=resnet_norm_eps, is_causal=encoder_causal, ) self.decoder = LTXDecoder3d( in_channels=latent_channels, out_channels=out_channels, block_out_channels=block_out_channels, spatio_temporal_scaling=spatio_temporal_scaling, layers_per_block=layers_per_block, patch_size=patch_size, patch_size_t=patch_size_t, resnet_norm_eps=resnet_norm_eps, is_causal=decoder_causal, ) latents_mean = torch.zeros((latent_channels,), requires_grad=False) latents_std = torch.ones((latent_channels,), requires_grad=False) self.register_buffer("latents_mean", latents_mean, persistent=True) self.register_buffer("latents_std", latents_std, persistent=True) self.spatial_compression_ratio = patch_size * 2 ** sum(spatio_temporal_scaling) self.temporal_compression_ratio = patch_size_t * 2 ** sum(spatio_temporal_scaling) # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension # to perform decoding of a single video latent at a time. self.use_slicing = False # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the # intermediate tiles together, the memory requirement can be lowered. self.use_tiling = False # When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames # at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered. self.use_framewise_encoding = False self.use_framewise_decoding = False # This can be configured based on the amount of GPU memory available. # `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs. # Setting it to higher values results in higher memory usage. self.num_sample_frames_batch_size = 16 self.num_latent_frames_batch_size = 2 # The minimal tile height and width for spatial tiling to be used self.tile_sample_min_height = 512 self.tile_sample_min_width = 512 # The minimal distance between two spatial tiles self.tile_sample_stride_height = 448 self.tile_sample_stride_width = 448 def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (LTXEncoder3d, LTXDecoder3d)): module.gradient_checkpointing = value def enable_tiling( self, tile_sample_min_height: Optional[int] = None, tile_sample_min_width: Optional[int] = None, tile_sample_stride_height: Optional[float] = None, tile_sample_stride_width: Optional[float] = None, ) -> None: r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. Args: tile_sample_min_height (`int`, *optional*): The minimum height required for a sample to be separated into tiles across the height dimension. tile_sample_min_width (`int`, *optional*): The minimum width required for a sample to be separated into tiles across the width dimension. tile_sample_stride_height (`int`, *optional*): The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are no tiling artifacts produced across the height dimension. tile_sample_stride_width (`int`, *optional*): The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling artifacts produced across the width dimension. """ self.use_tiling = True self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width def disable_tiling(self) -> None: r""" Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.use_tiling = False def enable_slicing(self) -> None: r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True def disable_slicing(self) -> None: r""" Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False def _encode(self, x: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = x.shape if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): return self.tiled_encode(x) if self.use_framewise_encoding: # TODO(aryan): requires investigation raise NotImplementedError( "Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to " "quality issues caused by splitting inference across frame dimension. If you believe this " "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls." ) else: enc = self.encoder(x) return enc @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded videos. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and x.shape[0] > 1: encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] h = torch.cat(encoded_slices) else: h = self._encode(x) posterior = DiagonalGaussianDistribution(h) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: batch_size, num_channels, num_frames, height, width = z.shape tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height): return self.tiled_decode(z, return_dict=return_dict) if self.use_framewise_decoding: # TODO(aryan): requires investigation raise NotImplementedError( "Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to " "quality issues caused by splitting inference across frame dimension. If you believe this " "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls." ) else: dec = self.decoder(z) if not return_dict: return (dec,) return DecoderOutput(sample=dec) @apply_forward_hook def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: """ Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and z.shape[0] > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z).sample if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( y / blend_extent ) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[4], b.shape[4], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( x / blend_extent ) return b def tiled_encode(self, x: torch.Tensor) -> torch.Tensor: r"""Encode a batch of images using a tiled encoder. Args: x (`torch.Tensor`): Input batch of videos. Returns: `torch.Tensor`: The latent representation of the encoded videos. """ batch_size, num_channels, num_frames, height, width = x.shape latent_height = height // self.spatial_compression_ratio latent_width = width // self.spatial_compression_ratio tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio blend_height = tile_latent_min_height - tile_latent_stride_height blend_width = tile_latent_min_width - tile_latent_stride_width # Split x into overlapping tiles and encode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, self.tile_sample_stride_height): row = [] for j in range(0, width, self.tile_sample_stride_width): if self.use_framewise_encoding: # TODO(aryan): requires investigation raise NotImplementedError( "Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to " "quality issues caused by splitting inference across frame dimension. If you believe this " "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls." ) else: time = self.encoder( x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width] ) row.append(time) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_width) result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width]) result_rows.append(torch.cat(result_row, dim=4)) enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width] return enc def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Decode a batch of images using a tiled decoder. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ batch_size, num_channels, num_frames, height, width = z.shape sample_height = height * self.spatial_compression_ratio sample_width = width * self.spatial_compression_ratio tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio blend_height = self.tile_sample_min_height - self.tile_sample_stride_height blend_width = self.tile_sample_min_width - self.tile_sample_stride_width # Split z into overlapping tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, tile_latent_stride_height): row = [] for j in range(0, width, tile_latent_stride_width): if self.use_framewise_decoding: # TODO(aryan): requires investigation raise NotImplementedError( "Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to " "quality issues caused by splitting inference across frame dimension. If you believe this " "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls." ) else: time = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width]) row.append(time) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_width) result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width]) result_rows.append(torch.cat(result_row, dim=4)) dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width] if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[torch.Tensor, torch.Tensor]: x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z) if not return_dict: return (dec,) return dec