# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional, Tuple, Union import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from ...configuration_utils import ConfigMixin, register_to_config from ...loaders.single_file_model import FromOriginalModelMixin from ...utils import logging from ...utils.accelerate_utils import apply_forward_hook from ..activations import get_activation from ..downsampling import CogVideoXDownsample3D from ..modeling_outputs import AutoencoderKLOutput from ..modeling_utils import ModelMixin from ..upsampling import CogVideoXUpsample3D from .vae import DecoderOutput, DiagonalGaussianDistribution logger = logging.get_logger(__name__) # pylint: disable=invalid-name class CogVideoXSafeConv3d(nn.Conv3d): r""" A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model. """ def forward(self, input: torch.Tensor) -> torch.Tensor: memory_count = ( (input.shape[0] * input.shape[1] * input.shape[2] * input.shape[3] * input.shape[4]) * 2 / 1024**3 ) # Set to 2GB, suitable for CuDNN if memory_count > 2: kernel_size = self.kernel_size[0] part_num = int(memory_count / 2) + 1 input_chunks = torch.chunk(input, part_num, dim=2) if kernel_size > 1: input_chunks = [input_chunks[0]] + [ torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2) for i in range(1, len(input_chunks)) ] output_chunks = [] for input_chunk in input_chunks: output_chunks.append(super().forward(input_chunk)) output = torch.cat(output_chunks, dim=2) return output else: return super().forward(input) class CogVideoXCausalConv3d(nn.Module): r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model. Args: in_channels (`int`): Number of channels in the input tensor. out_channels (`int`): Number of output channels produced by the convolution. kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel. stride (`int`, defaults to `1`): Stride of the convolution. dilation (`int`, defaults to `1`): Dilation rate of the convolution. pad_mode (`str`, defaults to `"constant"`): Padding mode. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int, int]], stride: int = 1, dilation: int = 1, pad_mode: str = "constant", ): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 time_kernel_size, height_kernel_size, width_kernel_size = kernel_size # TODO(aryan): configure calculation based on stride and dilation in the future. # Since CogVideoX does not use it, it is currently tailored to "just work" with Mochi time_pad = time_kernel_size - 1 height_pad = (height_kernel_size - 1) // 2 width_pad = (width_kernel_size - 1) // 2 self.pad_mode = pad_mode self.height_pad = height_pad self.width_pad = width_pad self.time_pad = time_pad self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) self.temporal_dim = 2 self.time_kernel_size = time_kernel_size stride = stride if isinstance(stride, tuple) else (stride, 1, 1) dilation = (dilation, 1, 1) self.conv = CogVideoXSafeConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, ) def fake_context_parallel_forward( self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None ) -> torch.Tensor: if self.pad_mode == "replicate": inputs = F.pad(inputs, self.time_causal_padding, mode="replicate") else: kernel_size = self.time_kernel_size if kernel_size > 1: cached_inputs = [conv_cache] if conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1) inputs = torch.cat(cached_inputs + [inputs], dim=2) return inputs def forward(self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None) -> torch.Tensor: inputs = self.fake_context_parallel_forward(inputs, conv_cache) if self.pad_mode == "replicate": conv_cache = None else: padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone() inputs = F.pad(inputs, padding_2d, mode="constant", value=0) output = self.conv(inputs) return output, conv_cache class CogVideoXSpatialNorm3D(nn.Module): r""" Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific to 3D-video like data. CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model. Args: f_channels (`int`): The number of channels for input to group normalization layer, and output of the spatial norm layer. zq_channels (`int`): The number of channels for the quantized vector as described in the paper. groups (`int`): Number of groups to separate the channels into for group normalization. """ def __init__( self, f_channels: int, zq_channels: int, groups: int = 32, ): super().__init__() self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True) self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) def forward( self, f: torch.Tensor, zq: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None ) -> torch.Tensor: new_conv_cache = {} conv_cache = conv_cache or {} if f.shape[2] > 1 and f.shape[2] % 2 == 1: f_first, f_rest = f[:, :, :1], f[:, :, 1:] f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:] z_first, z_rest = zq[:, :, :1], zq[:, :, 1:] z_first = F.interpolate(z_first, size=f_first_size) z_rest = F.interpolate(z_rest, size=f_rest_size) zq = torch.cat([z_first, z_rest], dim=2) else: zq = F.interpolate(zq, size=f.shape[-3:]) conv_y, new_conv_cache["conv_y"] = self.conv_y(zq, conv_cache=conv_cache.get("conv_y")) conv_b, new_conv_cache["conv_b"] = self.conv_b(zq, conv_cache=conv_cache.get("conv_b")) norm_f = self.norm_layer(f) new_f = norm_f * conv_y + conv_b return new_f, new_conv_cache class CogVideoXResnetBlock3D(nn.Module): r""" A 3D ResNet block used in the CogVideoX model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. dropout (`float`, defaults to `0.0`): Dropout rate. temb_channels (`int`, defaults to `512`): Number of time embedding channels. groups (`int`, defaults to `32`): Number of groups to separate the channels into for group normalization. eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. non_linearity (`str`, defaults to `"swish"`): Activation function to use. conv_shortcut (bool, defaults to `False`): Whether or not to use a convolution shortcut. spatial_norm_dim (`int`, *optional*): The dimension to use for spatial norm if it is to be used instead of group norm. pad_mode (str, defaults to `"first"`): Padding mode. """ def __init__( self, in_channels: int, out_channels: Optional[int] = None, dropout: float = 0.0, temb_channels: int = 512, groups: int = 32, eps: float = 1e-6, non_linearity: str = "swish", conv_shortcut: bool = False, spatial_norm_dim: Optional[int] = None, pad_mode: str = "first", ): super().__init__() out_channels = out_channels or in_channels self.in_channels = in_channels self.out_channels = out_channels self.nonlinearity = get_activation(non_linearity) self.use_conv_shortcut = conv_shortcut self.spatial_norm_dim = spatial_norm_dim if spatial_norm_dim is None: self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps) self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps) else: self.norm1 = CogVideoXSpatialNorm3D( f_channels=in_channels, zq_channels=spatial_norm_dim, groups=groups, ) self.norm2 = CogVideoXSpatialNorm3D( f_channels=out_channels, zq_channels=spatial_norm_dim, groups=groups, ) self.conv1 = CogVideoXCausalConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode ) if temb_channels > 0: self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels) self.dropout = nn.Dropout(dropout) self.conv2 = CogVideoXCausalConv3d( in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode ) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = CogVideoXCausalConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode ) else: self.conv_shortcut = CogVideoXSafeConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0 ) def forward( self, inputs: torch.Tensor, temb: Optional[torch.Tensor] = None, zq: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: new_conv_cache = {} conv_cache = conv_cache or {} hidden_states = inputs if zq is not None: hidden_states, new_conv_cache["norm1"] = self.norm1(hidden_states, zq, conv_cache=conv_cache.get("norm1")) else: hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1")) if temb is not None: hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None] if zq is not None: hidden_states, new_conv_cache["norm2"] = self.norm2(hidden_states, zq, conv_cache=conv_cache.get("norm2")) else: hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2")) if self.in_channels != self.out_channels: if self.use_conv_shortcut: inputs, new_conv_cache["conv_shortcut"] = self.conv_shortcut( inputs, conv_cache=conv_cache.get("conv_shortcut") ) else: inputs = self.conv_shortcut(inputs) hidden_states = hidden_states + inputs return hidden_states, new_conv_cache class CogVideoXDownBlock3D(nn.Module): r""" A downsampling block used in the CogVideoX model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. temb_channels (`int`, defaults to `512`): Number of time embedding channels. num_layers (`int`, defaults to `1`): Number of resnet layers. dropout (`float`, defaults to `0.0`): Dropout rate. resnet_eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. resnet_act_fn (`str`, defaults to `"swish"`): Activation function to use. resnet_groups (`int`, defaults to `32`): Number of groups to separate the channels into for group normalization. add_downsample (`bool`, defaults to `True`): Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension. compress_time (`bool`, defaults to `False`): Whether or not to downsample across temporal dimension. pad_mode (str, defaults to `"first"`): Padding mode. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", resnet_groups: int = 32, add_downsample: bool = True, downsample_padding: int = 0, compress_time: bool = False, pad_mode: str = "first", ): super().__init__() resnets = [] for i in range(num_layers): in_channel = in_channels if i == 0 else out_channels resnets.append( CogVideoXResnetBlock3D( in_channels=in_channel, out_channels=out_channels, dropout=dropout, temb_channels=temb_channels, groups=resnet_groups, eps=resnet_eps, non_linearity=resnet_act_fn, pad_mode=pad_mode, ) ) self.resnets = nn.ModuleList(resnets) self.downsamplers = None if add_downsample: self.downsamplers = nn.ModuleList( [ CogVideoXDownsample3D( out_channels, out_channels, padding=downsample_padding, compress_time=compress_time ) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, zq: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""Forward method of the `CogVideoXDownBlock3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} for i, resnet in enumerate(self.resnets): conv_cache_key = f"resnet_{i}" if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, zq, conv_cache.get(conv_cache_key), ) else: hidden_states, new_conv_cache[conv_cache_key] = resnet( hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key) ) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) return hidden_states, new_conv_cache class CogVideoXMidBlock3D(nn.Module): r""" A middle block used in the CogVideoX model. Args: in_channels (`int`): Number of input channels. temb_channels (`int`, defaults to `512`): Number of time embedding channels. dropout (`float`, defaults to `0.0`): Dropout rate. num_layers (`int`, defaults to `1`): Number of resnet layers. resnet_eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. resnet_act_fn (`str`, defaults to `"swish"`): Activation function to use. resnet_groups (`int`, defaults to `32`): Number of groups to separate the channels into for group normalization. spatial_norm_dim (`int`, *optional*): The dimension to use for spatial norm if it is to be used instead of group norm. pad_mode (str, defaults to `"first"`): Padding mode. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", resnet_groups: int = 32, spatial_norm_dim: Optional[int] = None, pad_mode: str = "first", ): super().__init__() resnets = [] for _ in range(num_layers): resnets.append( CogVideoXResnetBlock3D( in_channels=in_channels, out_channels=in_channels, dropout=dropout, temb_channels=temb_channels, groups=resnet_groups, eps=resnet_eps, spatial_norm_dim=spatial_norm_dim, non_linearity=resnet_act_fn, pad_mode=pad_mode, ) ) self.resnets = nn.ModuleList(resnets) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, zq: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""Forward method of the `CogVideoXMidBlock3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} for i, resnet in enumerate(self.resnets): conv_cache_key = f"resnet_{i}" if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, zq, conv_cache.get(conv_cache_key) ) else: hidden_states, new_conv_cache[conv_cache_key] = resnet( hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key) ) return hidden_states, new_conv_cache class CogVideoXUpBlock3D(nn.Module): r""" An upsampling block used in the CogVideoX model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. temb_channels (`int`, defaults to `512`): Number of time embedding channels. dropout (`float`, defaults to `0.0`): Dropout rate. num_layers (`int`, defaults to `1`): Number of resnet layers. resnet_eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. resnet_act_fn (`str`, defaults to `"swish"`): Activation function to use. resnet_groups (`int`, defaults to `32`): Number of groups to separate the channels into for group normalization. spatial_norm_dim (`int`, defaults to `16`): The dimension to use for spatial norm if it is to be used instead of group norm. add_upsample (`bool`, defaults to `True`): Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension. compress_time (`bool`, defaults to `False`): Whether or not to downsample across temporal dimension. pad_mode (str, defaults to `"first"`): Padding mode. """ def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", resnet_groups: int = 32, spatial_norm_dim: int = 16, add_upsample: bool = True, upsample_padding: int = 1, compress_time: bool = False, pad_mode: str = "first", ): super().__init__() resnets = [] for i in range(num_layers): in_channel = in_channels if i == 0 else out_channels resnets.append( CogVideoXResnetBlock3D( in_channels=in_channel, out_channels=out_channels, dropout=dropout, temb_channels=temb_channels, groups=resnet_groups, eps=resnet_eps, non_linearity=resnet_act_fn, spatial_norm_dim=spatial_norm_dim, pad_mode=pad_mode, ) ) self.resnets = nn.ModuleList(resnets) self.upsamplers = None if add_upsample: self.upsamplers = nn.ModuleList( [ CogVideoXUpsample3D( out_channels, out_channels, padding=upsample_padding, compress_time=compress_time ) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, zq: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""Forward method of the `CogVideoXUpBlock3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} for i, resnet in enumerate(self.resnets): conv_cache_key = f"resnet_{i}" if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, zq, conv_cache.get(conv_cache_key), ) else: hidden_states, new_conv_cache[conv_cache_key] = resnet( hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key) ) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states, new_conv_cache class CogVideoXEncoder3D(nn.Module): r""" The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available options. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): The number of output channels for each block. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. See `~diffusers.models.activations.get_activation` for available options. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups for normalization. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int = 3, out_channels: int = 16, down_block_types: Tuple[str, ...] = ( "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", ), block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), layers_per_block: int = 3, act_fn: str = "silu", norm_eps: float = 1e-6, norm_num_groups: int = 32, dropout: float = 0.0, pad_mode: str = "first", temporal_compression_ratio: float = 4, ): super().__init__() # log2 of temporal_compress_times temporal_compress_level = int(np.log2(temporal_compression_ratio)) self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode) self.down_blocks = nn.ModuleList([]) # down blocks output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 compress_time = i < temporal_compress_level if down_block_type == "CogVideoXDownBlock3D": down_block = CogVideoXDownBlock3D( in_channels=input_channel, out_channels=output_channel, temb_channels=0, dropout=dropout, num_layers=layers_per_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, add_downsample=not is_final_block, compress_time=compress_time, ) else: raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`") self.down_blocks.append(down_block) # mid block self.mid_block = CogVideoXMidBlock3D( in_channels=block_out_channels[-1], temb_channels=0, dropout=dropout, num_layers=2, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, pad_mode=pad_mode, ) self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6) self.conv_act = nn.SiLU() self.conv_out = CogVideoXCausalConv3d( block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode ) self.gradient_checkpointing = False def forward( self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""The forward method of the `CogVideoXEncoder3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in")) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward # 1. Down for i, down_block in enumerate(self.down_blocks): conv_cache_key = f"down_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(down_block), hidden_states, temb, None, conv_cache.get(conv_cache_key), ) # 2. Mid hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), hidden_states, temb, None, conv_cache.get("mid_block"), ) else: # 1. Down for i, down_block in enumerate(self.down_blocks): conv_cache_key = f"down_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = down_block( hidden_states, temb, None, conv_cache.get(conv_cache_key) ) # 2. Mid hidden_states, new_conv_cache["mid_block"] = self.mid_block( hidden_states, temb, None, conv_cache=conv_cache.get("mid_block") ) # 3. Post-process hidden_states = self.norm_out(hidden_states) hidden_states = self.conv_act(hidden_states) hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out")) return hidden_states, new_conv_cache class CogVideoXDecoder3D(nn.Module): r""" The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output sample. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): The number of output channels for each block. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. See `~diffusers.models.activations.get_activation` for available options. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups for normalization. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int = 16, out_channels: int = 3, up_block_types: Tuple[str, ...] = ( "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", ), block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), layers_per_block: int = 3, act_fn: str = "silu", norm_eps: float = 1e-6, norm_num_groups: int = 32, dropout: float = 0.0, pad_mode: str = "first", temporal_compression_ratio: float = 4, ): super().__init__() reversed_block_out_channels = list(reversed(block_out_channels)) self.conv_in = CogVideoXCausalConv3d( in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode ) # mid block self.mid_block = CogVideoXMidBlock3D( in_channels=reversed_block_out_channels[0], temb_channels=0, num_layers=2, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, spatial_norm_dim=in_channels, pad_mode=pad_mode, ) # up blocks self.up_blocks = nn.ModuleList([]) output_channel = reversed_block_out_channels[0] temporal_compress_level = int(np.log2(temporal_compression_ratio)) for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 compress_time = i < temporal_compress_level if up_block_type == "CogVideoXUpBlock3D": up_block = CogVideoXUpBlock3D( in_channels=prev_output_channel, out_channels=output_channel, temb_channels=0, dropout=dropout, num_layers=layers_per_block + 1, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, spatial_norm_dim=in_channels, add_upsample=not is_final_block, compress_time=compress_time, pad_mode=pad_mode, ) prev_output_channel = output_channel else: raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`") self.up_blocks.append(up_block) self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups) self.conv_act = nn.SiLU() self.conv_out = CogVideoXCausalConv3d( reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode ) self.gradient_checkpointing = False def forward( self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""The forward method of the `CogVideoXDecoder3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in")) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward # 1. Mid hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), hidden_states, temb, sample, conv_cache.get("mid_block"), ) # 2. Up for i, up_block in enumerate(self.up_blocks): conv_cache_key = f"up_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), hidden_states, temb, sample, conv_cache.get(conv_cache_key), ) else: # 1. Mid hidden_states, new_conv_cache["mid_block"] = self.mid_block( hidden_states, temb, sample, conv_cache=conv_cache.get("mid_block") ) # 2. Up for i, up_block in enumerate(self.up_blocks): conv_cache_key = f"up_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = up_block( hidden_states, temb, sample, conv_cache=conv_cache.get(conv_cache_key) ) # 3. Post-process hidden_states, new_conv_cache["norm_out"] = self.norm_out( hidden_states, sample, conv_cache=conv_cache.get("norm_out") ) hidden_states = self.conv_act(hidden_states) hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out")) return hidden_states, new_conv_cache class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin): r""" A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in [CogVideoX](https://github.com/THUDM/CogVideo). This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. sample_size (`int`, *optional*, defaults to `32`): Sample input size. scaling_factor (`float`, *optional*, defaults to `1.15258426`): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. force_upcast (`bool`, *optional*, default to `True`): If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE can be fine-tuned / trained to a lower range without loosing too much precision in which case `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix """ _supports_gradient_checkpointing = True _no_split_modules = ["CogVideoXResnetBlock3D"] @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ( "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", ), up_block_types: Tuple[str] = ( "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", ), block_out_channels: Tuple[int] = (128, 256, 256, 512), latent_channels: int = 16, layers_per_block: int = 3, act_fn: str = "silu", norm_eps: float = 1e-6, norm_num_groups: int = 32, temporal_compression_ratio: float = 4, sample_height: int = 480, sample_width: int = 720, scaling_factor: float = 1.15258426, shift_factor: Optional[float] = None, latents_mean: Optional[Tuple[float]] = None, latents_std: Optional[Tuple[float]] = None, force_upcast: float = True, use_quant_conv: bool = False, use_post_quant_conv: bool = False, invert_scale_latents: bool = False, ): super().__init__() self.encoder = CogVideoXEncoder3D( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_eps=norm_eps, norm_num_groups=norm_num_groups, temporal_compression_ratio=temporal_compression_ratio, ) self.decoder = CogVideoXDecoder3D( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_eps=norm_eps, norm_num_groups=norm_num_groups, temporal_compression_ratio=temporal_compression_ratio, ) self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None self.use_slicing = False self.use_tiling = False # Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not # recommended because the temporal parts of the VAE, here, are tricky to understand. # If you decode X latent frames together, the number of output frames is: # (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames # # Example with num_latent_frames_batch_size = 2: # - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together # => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) # => 6 * 8 = 48 frames # - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together # => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) + # ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) # => 1 * 9 + 5 * 8 = 49 frames # It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that # setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different # number of temporal frames. self.num_latent_frames_batch_size = 2 self.num_sample_frames_batch_size = 8 # We make the minimum height and width of sample for tiling half that of the generally supported self.tile_sample_min_height = sample_height // 2 self.tile_sample_min_width = sample_width // 2 self.tile_latent_min_height = int( self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) ) self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) # These are experimental overlap factors that were chosen based on experimentation and seem to work best for # 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX # and so the tiling implementation has only been tested on those specific resolutions. self.tile_overlap_factor_height = 1 / 6 self.tile_overlap_factor_width = 1 / 5 def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)): module.gradient_checkpointing = value def enable_tiling( self, tile_sample_min_height: Optional[int] = None, tile_sample_min_width: Optional[int] = None, tile_overlap_factor_height: Optional[float] = None, tile_overlap_factor_width: Optional[float] = None, ) -> None: r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. Args: tile_sample_min_height (`int`, *optional*): The minimum height required for a sample to be separated into tiles across the height dimension. tile_sample_min_width (`int`, *optional*): The minimum width required for a sample to be separated into tiles across the width dimension. tile_overlap_factor_height (`int`, *optional*): The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher value might cause more tiles to be processed leading to slow down of the decoding process. tile_overlap_factor_width (`int`, *optional*): The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher value might cause more tiles to be processed leading to slow down of the decoding process. """ self.use_tiling = True self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width self.tile_latent_min_height = int( self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) ) self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width def disable_tiling(self) -> None: r""" Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.use_tiling = False def enable_slicing(self) -> None: r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True def disable_slicing(self) -> None: r""" Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False def _encode(self, x: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = x.shape if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): return self.tiled_encode(x) frame_batch_size = self.num_sample_frames_batch_size # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k. # As the extra single frame is handled inside the loop, it is not required to round up here. num_batches = max(num_frames // frame_batch_size, 1) conv_cache = None enc = [] for i in range(num_batches): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) end_frame = frame_batch_size * (i + 1) + remaining_frames x_intermediate = x[:, :, start_frame:end_frame] x_intermediate, conv_cache = self.encoder(x_intermediate, conv_cache=conv_cache) if self.quant_conv is not None: x_intermediate = self.quant_conv(x_intermediate) enc.append(x_intermediate) enc = torch.cat(enc, dim=2) return enc @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded videos. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and x.shape[0] > 1: encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] h = torch.cat(encoded_slices) else: h = self._encode(x) posterior = DiagonalGaussianDistribution(h) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: batch_size, num_channels, num_frames, height, width = z.shape if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): return self.tiled_decode(z, return_dict=return_dict) frame_batch_size = self.num_latent_frames_batch_size num_batches = max(num_frames // frame_batch_size, 1) conv_cache = None dec = [] for i in range(num_batches): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) end_frame = frame_batch_size * (i + 1) + remaining_frames z_intermediate = z[:, :, start_frame:end_frame] if self.post_quant_conv is not None: z_intermediate = self.post_quant_conv(z_intermediate) z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache) dec.append(z_intermediate) dec = torch.cat(dec, dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=dec) @apply_forward_hook def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: """ Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and z.shape[0] > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z).sample if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( y / blend_extent ) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[4], b.shape[4], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( x / blend_extent ) return b def tiled_encode(self, x: torch.Tensor) -> torch.Tensor: r"""Encode a batch of images using a tiled encoder. When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the output, but they should be much less noticeable. Args: x (`torch.Tensor`): Input batch of videos. Returns: `torch.Tensor`: The latent representation of the encoded videos. """ # For a rough memory estimate, take a look at the `tiled_decode` method. batch_size, num_channels, num_frames, height, width = x.shape overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor_height)) overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor_width)) blend_extent_height = int(self.tile_latent_min_height * self.tile_overlap_factor_height) blend_extent_width = int(self.tile_latent_min_width * self.tile_overlap_factor_width) row_limit_height = self.tile_latent_min_height - blend_extent_height row_limit_width = self.tile_latent_min_width - blend_extent_width frame_batch_size = self.num_sample_frames_batch_size # Split x into overlapping tiles and encode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, overlap_height): row = [] for j in range(0, width, overlap_width): # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k. # As the extra single frame is handled inside the loop, it is not required to round up here. num_batches = max(num_frames // frame_batch_size, 1) conv_cache = None time = [] for k in range(num_batches): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) end_frame = frame_batch_size * (k + 1) + remaining_frames tile = x[ :, :, start_frame:end_frame, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width, ] tile, conv_cache = self.encoder(tile, conv_cache=conv_cache) if self.quant_conv is not None: tile = self.quant_conv(tile) time.append(tile) row.append(torch.cat(time, dim=2)) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent_width) result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) result_rows.append(torch.cat(result_row, dim=4)) enc = torch.cat(result_rows, dim=3) return enc def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Decode a batch of images using a tiled decoder. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ # Rough memory assessment: # - In CogVideoX-2B, there are a total of 24 CausalConv3d layers. # - The biggest intermediate dimensions are: [1, 128, 9, 480, 720]. # - Assume fp16 (2 bytes per value). # Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB # # Memory assessment when using tiling: # - Assume everything as above but now HxW is 240x360 by tiling in half # Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB batch_size, num_channels, num_frames, height, width = z.shape overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height)) overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width)) blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height) blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width) row_limit_height = self.tile_sample_min_height - blend_extent_height row_limit_width = self.tile_sample_min_width - blend_extent_width frame_batch_size = self.num_latent_frames_batch_size # Split z into overlapping tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, overlap_height): row = [] for j in range(0, width, overlap_width): num_batches = max(num_frames // frame_batch_size, 1) conv_cache = None time = [] for k in range(num_batches): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) end_frame = frame_batch_size * (k + 1) + remaining_frames tile = z[ :, :, start_frame:end_frame, i : i + self.tile_latent_min_height, j : j + self.tile_latent_min_width, ] if self.post_quant_conv is not None: tile = self.post_quant_conv(tile) tile, conv_cache = self.decoder(tile, conv_cache=conv_cache) time.append(tile) row.append(torch.cat(time, dim=2)) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent_width) result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) result_rows.append(torch.cat(result_row, dim=4)) dec = torch.cat(result_rows, dim=3) if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[torch.Tensor, torch.Tensor]: x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec)