# Copyright 2024 MIT, Tsinghua University, NVIDIA CORPORATION and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import FromOriginalModelMixin from ...utils.accelerate_utils import apply_forward_hook from ..activations import get_activation from ..attention_processor import SanaMultiscaleLinearAttention from ..modeling_utils import ModelMixin from ..normalization import RMSNorm, get_normalization from ..transformers.sana_transformer import GLUMBConv from .vae import DecoderOutput, EncoderOutput class ResBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, norm_type: str = "batch_norm", act_fn: str = "relu6", ) -> None: super().__init__() self.norm_type = norm_type self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity() self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1) self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False) self.norm = get_normalization(norm_type, out_channels) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residual = hidden_states hidden_states = self.conv1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv2(hidden_states) if self.norm_type == "rms_norm": # move channel to the last dimension so we apply RMSnorm across channel dimension hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1) else: hidden_states = self.norm(hidden_states) return hidden_states + residual class EfficientViTBlock(nn.Module): def __init__( self, in_channels: int, mult: float = 1.0, attention_head_dim: int = 32, qkv_multiscales: Tuple[int, ...] = (5,), norm_type: str = "batch_norm", ) -> None: super().__init__() self.attn = SanaMultiscaleLinearAttention( in_channels=in_channels, out_channels=in_channels, mult=mult, attention_head_dim=attention_head_dim, norm_type=norm_type, kernel_sizes=qkv_multiscales, residual_connection=True, ) self.conv_out = GLUMBConv( in_channels=in_channels, out_channels=in_channels, norm_type="rms_norm", ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.attn(x) x = self.conv_out(x) return x def get_block( block_type: str, in_channels: int, out_channels: int, attention_head_dim: int, norm_type: str, act_fn: str, qkv_mutliscales: Tuple[int] = (), ): if block_type == "ResBlock": block = ResBlock(in_channels, out_channels, norm_type, act_fn) elif block_type == "EfficientViTBlock": block = EfficientViTBlock( in_channels, attention_head_dim=attention_head_dim, norm_type=norm_type, qkv_multiscales=qkv_mutliscales ) else: raise ValueError(f"Block with {block_type=} is not supported.") return block class DCDownBlock2d(nn.Module): def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None: super().__init__() self.downsample = downsample self.factor = 2 self.stride = 1 if downsample else 2 self.group_size = in_channels * self.factor**2 // out_channels self.shortcut = shortcut out_ratio = self.factor**2 if downsample: assert out_channels % out_ratio == 0 out_channels = out_channels // out_ratio self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=self.stride, padding=1, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: x = self.conv(hidden_states) if self.downsample: x = F.pixel_unshuffle(x, self.factor) if self.shortcut: y = F.pixel_unshuffle(hidden_states, self.factor) y = y.unflatten(1, (-1, self.group_size)) y = y.mean(dim=2) hidden_states = x + y else: hidden_states = x return hidden_states class DCUpBlock2d(nn.Module): def __init__( self, in_channels: int, out_channels: int, interpolate: bool = False, shortcut: bool = True, interpolation_mode: str = "nearest", ) -> None: super().__init__() self.interpolate = interpolate self.interpolation_mode = interpolation_mode self.shortcut = shortcut self.factor = 2 self.repeats = out_channels * self.factor**2 // in_channels out_ratio = self.factor**2 if not interpolate: out_channels = out_channels * out_ratio self.conv = nn.Conv2d(in_channels, out_channels, 3, 1, 1) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.interpolate: x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode) x = self.conv(x) else: x = self.conv(hidden_states) x = F.pixel_shuffle(x, self.factor) if self.shortcut: y = hidden_states.repeat_interleave(self.repeats, dim=1) y = F.pixel_shuffle(y, self.factor) hidden_states = x + y else: hidden_states = x return hidden_states class Encoder(nn.Module): def __init__( self, in_channels: int, latent_channels: int, attention_head_dim: int = 32, block_type: Union[str, Tuple[str]] = "ResBlock", block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024), layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2), qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)), downsample_block_type: str = "pixel_unshuffle", out_shortcut: bool = True, ): super().__init__() num_blocks = len(block_out_channels) if isinstance(block_type, str): block_type = (block_type,) * num_blocks if layers_per_block[0] > 0: self.conv_in = nn.Conv2d( in_channels, block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1], kernel_size=3, stride=1, padding=1, ) else: self.conv_in = DCDownBlock2d( in_channels=in_channels, out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1], downsample=downsample_block_type == "pixel_unshuffle", shortcut=False, ) down_blocks = [] for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)): down_block_list = [] for _ in range(num_layers): block = get_block( block_type[i], out_channel, out_channel, attention_head_dim=attention_head_dim, norm_type="rms_norm", act_fn="silu", qkv_mutliscales=qkv_multiscales[i], ) down_block_list.append(block) if i < num_blocks - 1 and num_layers > 0: downsample_block = DCDownBlock2d( in_channels=out_channel, out_channels=block_out_channels[i + 1], downsample=downsample_block_type == "pixel_unshuffle", shortcut=True, ) down_block_list.append(downsample_block) down_blocks.append(nn.Sequential(*down_block_list)) self.down_blocks = nn.ModuleList(down_blocks) self.conv_out = nn.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1) self.out_shortcut = out_shortcut if out_shortcut: self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv_in(hidden_states) for down_block in self.down_blocks: hidden_states = down_block(hidden_states) if self.out_shortcut: x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size)) x = x.mean(dim=2) hidden_states = self.conv_out(hidden_states) + x else: hidden_states = self.conv_out(hidden_states) return hidden_states class Decoder(nn.Module): def __init__( self, in_channels: int, latent_channels: int, attention_head_dim: int = 32, block_type: Union[str, Tuple[str]] = "ResBlock", block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024), layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2), qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)), norm_type: Union[str, Tuple[str]] = "rms_norm", act_fn: Union[str, Tuple[str]] = "silu", upsample_block_type: str = "pixel_shuffle", in_shortcut: bool = True, ): super().__init__() num_blocks = len(block_out_channels) if isinstance(block_type, str): block_type = (block_type,) * num_blocks if isinstance(norm_type, str): norm_type = (norm_type,) * num_blocks if isinstance(act_fn, str): act_fn = (act_fn,) * num_blocks self.conv_in = nn.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1) self.in_shortcut = in_shortcut if in_shortcut: self.in_shortcut_repeats = block_out_channels[-1] // latent_channels up_blocks = [] for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))): up_block_list = [] if i < num_blocks - 1 and num_layers > 0: upsample_block = DCUpBlock2d( block_out_channels[i + 1], out_channel, interpolate=upsample_block_type == "interpolate", shortcut=True, ) up_block_list.append(upsample_block) for _ in range(num_layers): block = get_block( block_type[i], out_channel, out_channel, attention_head_dim=attention_head_dim, norm_type=norm_type[i], act_fn=act_fn[i], qkv_mutliscales=qkv_multiscales[i], ) up_block_list.append(block) up_blocks.insert(0, nn.Sequential(*up_block_list)) self.up_blocks = nn.ModuleList(up_blocks) channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1] self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True) self.conv_act = nn.ReLU() self.conv_out = None if layers_per_block[0] > 0: self.conv_out = nn.Conv2d(channels, in_channels, 3, 1, 1) else: self.conv_out = DCUpBlock2d( channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.in_shortcut: x = hidden_states.repeat_interleave(self.in_shortcut_repeats, dim=1) hidden_states = self.conv_in(hidden_states) + x else: hidden_states = self.conv_in(hidden_states) for up_block in reversed(self.up_blocks): hidden_states = up_block(hidden_states) hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) hidden_states = self.conv_act(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states class AutoencoderDC(ModelMixin, ConfigMixin, FromOriginalModelMixin): r""" An Autoencoder model introduced in [DCAE](https://arxiv.org/abs/2410.10733) and used in [SANA](https://arxiv.org/abs/2410.10629). This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Args: in_channels (`int`, defaults to `3`): The number of input channels in samples. latent_channels (`int`, defaults to `32`): The number of channels in the latent space representation. encoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`): The type(s) of block to use in the encoder. decoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`): The type(s) of block to use in the decoder. encoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`): The number of output channels for each block in the encoder. decoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`): The number of output channels for each block in the decoder. encoder_layers_per_block (`Tuple[int]`, defaults to `(2, 2, 2, 3, 3, 3)`): The number of layers per block in the encoder. decoder_layers_per_block (`Tuple[int]`, defaults to `(3, 3, 3, 3, 3, 3)`): The number of layers per block in the decoder. encoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`): Multi-scale configurations for the encoder's QKV (query-key-value) transformations. decoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`): Multi-scale configurations for the decoder's QKV (query-key-value) transformations. upsample_block_type (`str`, defaults to `"pixel_shuffle"`): The type of block to use for upsampling in the decoder. downsample_block_type (`str`, defaults to `"pixel_unshuffle"`): The type of block to use for downsampling in the encoder. decoder_norm_types (`Union[str, Tuple[str]]`, defaults to `"rms_norm"`): The normalization type(s) to use in the decoder. decoder_act_fns (`Union[str, Tuple[str]]`, defaults to `"silu"`): The activation function(s) to use in the decoder. scaling_factor (`float`, defaults to `1.0`): The multiplicative inverse of the root mean square of the latent features. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. """ _supports_gradient_checkpointing = False @register_to_config def __init__( self, in_channels: int = 3, latent_channels: int = 32, attention_head_dim: int = 32, encoder_block_types: Union[str, Tuple[str]] = "ResBlock", decoder_block_types: Union[str, Tuple[str]] = "ResBlock", encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024), decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024), encoder_layers_per_block: Tuple[int] = (2, 2, 2, 3, 3, 3), decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3, 3, 3), encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)), decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)), upsample_block_type: str = "pixel_shuffle", downsample_block_type: str = "pixel_unshuffle", decoder_norm_types: Union[str, Tuple[str]] = "rms_norm", decoder_act_fns: Union[str, Tuple[str]] = "silu", scaling_factor: float = 1.0, ) -> None: super().__init__() self.encoder = Encoder( in_channels=in_channels, latent_channels=latent_channels, attention_head_dim=attention_head_dim, block_type=encoder_block_types, block_out_channels=encoder_block_out_channels, layers_per_block=encoder_layers_per_block, qkv_multiscales=encoder_qkv_multiscales, downsample_block_type=downsample_block_type, ) self.decoder = Decoder( in_channels=in_channels, latent_channels=latent_channels, attention_head_dim=attention_head_dim, block_type=decoder_block_types, block_out_channels=decoder_block_out_channels, layers_per_block=decoder_layers_per_block, qkv_multiscales=decoder_qkv_multiscales, norm_type=decoder_norm_types, act_fn=decoder_act_fns, upsample_block_type=upsample_block_type, ) self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1) self.temporal_compression_ratio = 1 # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension # to perform decoding of a single video latent at a time. self.use_slicing = False # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the # intermediate tiles together, the memory requirement can be lowered. self.use_tiling = False # The minimal tile height and width for spatial tiling to be used self.tile_sample_min_height = 512 self.tile_sample_min_width = 512 # The minimal distance between two spatial tiles self.tile_sample_stride_height = 448 self.tile_sample_stride_width = 448 def enable_tiling( self, tile_sample_min_height: Optional[int] = None, tile_sample_min_width: Optional[int] = None, tile_sample_stride_height: Optional[float] = None, tile_sample_stride_width: Optional[float] = None, ) -> None: r""" Enable tiled AE decoding. When this option is enabled, the AE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. Args: tile_sample_min_height (`int`, *optional*): The minimum height required for a sample to be separated into tiles across the height dimension. tile_sample_min_width (`int`, *optional*): The minimum width required for a sample to be separated into tiles across the width dimension. tile_sample_stride_height (`int`, *optional*): The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are no tiling artifacts produced across the height dimension. tile_sample_stride_width (`int`, *optional*): The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling artifacts produced across the width dimension. """ self.use_tiling = True self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width def disable_tiling(self) -> None: r""" Disable tiled AE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.use_tiling = False def enable_slicing(self) -> None: r""" Enable sliced AE decoding. When this option is enabled, the AE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True def disable_slicing(self) -> None: r""" Disable sliced AE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False def _encode(self, x: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = x.shape if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): return self.tiled_encode(x, return_dict=False)[0] encoded = self.encoder(x) return encoded @apply_forward_hook def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[EncoderOutput, Tuple[torch.Tensor]]: r""" Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, defaults to `True`): Whether to return a [`~models.vae.EncoderOutput`] instead of a plain tuple. Returns: The latent representations of the encoded videos. If `return_dict` is True, a [`~models.vae.EncoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and x.shape[0] > 1: encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] encoded = torch.cat(encoded_slices) else: encoded = self._encode(x) if not return_dict: return (encoded,) return EncoderOutput(latent=encoded) def _decode(self, z: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = z.shape if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): return self.tiled_decode(z, return_dict=False)[0] decoded = self.decoder(z) return decoded @apply_forward_hook def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, Tuple[torch.Tensor]]: r""" Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and z.size(0) > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z) if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> torch.Tensor: raise NotImplementedError("`tiled_encode` has not been implemented for AutoencoderDC.") def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: raise NotImplementedError("`tiled_decode` has not been implemented for AutoencoderDC.") def forward(self, sample: torch.Tensor, return_dict: bool = True) -> torch.Tensor: encoded = self.encode(sample, return_dict=False)[0] decoded = self.decode(encoded, return_dict=False)[0] if not return_dict: return (decoded,) return DecoderOutput(sample=decoded)