|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
AutoPipelineForInpainting, |
|
PNDMScheduler, |
|
StableDiffusionPAGInpaintPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineFromPipeTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionPAGInpaintPipelineFastTests( |
|
PipelineTesterMixin, |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineFromPipeTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionPAGInpaintPipeline |
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) |
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
image_latents_params = frozenset([]) |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union( |
|
{"add_text_embeds", "add_time_ids", "mask", "masked_image_latents"} |
|
) |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
|
|
image[8:, 8:, :] = 255 |
|
mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64)) |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"strength": 1.0, |
|
"pag_scale": 0.9, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_pag_applied_layers(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
all_self_attn_layers = [k for k in pipe.unet.attn_processors.keys() if "attn1" in k] |
|
original_attn_procs = pipe.unet.attn_processors |
|
pag_layers = [ |
|
"down", |
|
"mid", |
|
"up", |
|
] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) |
|
|
|
|
|
|
|
|
|
all_self_attn_mid_layers = [ |
|
"mid_block.attentions.0.transformer_blocks.0.attn1.processor", |
|
|
|
] |
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["mid"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["mid_block"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["mid_block.attentions.0"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) |
|
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["mid_block.attentions.1"] |
|
with self.assertRaises(ValueError): |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["down"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert len(pipe.pag_attn_processors) == 2 |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["down_blocks.0"] |
|
with self.assertRaises(ValueError): |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["down_blocks.1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert len(pipe.pag_attn_processors) == 2 |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["down_blocks.1.attentions.1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert len(pipe.pag_attn_processors) == 1 |
|
|
|
def test_pag_inference(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe_pag(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == ( |
|
1, |
|
64, |
|
64, |
|
3, |
|
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" |
|
|
|
expected_slice = np.array([0.7190, 0.5807, 0.6007, 0.5600, 0.6350, 0.6639, 0.5680, 0.5664, 0.5230]) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}" |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionPAGPipelineIntegrationTests(unittest.TestCase): |
|
pipeline_class = StableDiffusionPAGInpaintPipeline |
|
repo_id = "runwayml/stable-diffusion-v1-5" |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", seed=0, guidance_scale=7.0): |
|
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" |
|
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" |
|
|
|
init_image = load_image(img_url).convert("RGB") |
|
mask_image = load_image(mask_url).convert("RGB") |
|
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A majestic tiger sitting on a bench", |
|
"generator": generator, |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"strength": 0.8, |
|
"num_inference_steps": 3, |
|
"guidance_scale": guidance_scale, |
|
"pag_scale": 3.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_pag_cfg(self): |
|
pipeline = AutoPipelineForInpainting.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) |
|
pipeline.enable_model_cpu_offload() |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipeline(**inputs).images |
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
assert image.shape == (1, 512, 512, 3) |
|
print(image_slice.flatten()) |
|
expected_slice = np.array( |
|
[0.38793945, 0.4111328, 0.47924805, 0.39208984, 0.4165039, 0.41674805, 0.37060547, 0.36791992, 0.40625] |
|
) |
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
), f"output is different from expected, {image_slice.flatten()}" |
|
|
|
def test_pag_uncond(self): |
|
pipeline = AutoPipelineForInpainting.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) |
|
pipeline.enable_model_cpu_offload() |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device, guidance_scale=0.0) |
|
image = pipeline(**inputs).images |
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array( |
|
[0.3876953, 0.40356445, 0.4934082, 0.39697266, 0.41674805, 0.41015625, 0.375, 0.36914062, 0.40649414] |
|
) |
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
), f"output is different from expected, {image_slice.flatten()}" |
|
|