|
import gc |
|
import inspect |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
AutoPipelineForImage2Image, |
|
FlowMatchEulerDiscreteScheduler, |
|
SD3Transformer2DModel, |
|
StableDiffusion3Img2ImgPipeline, |
|
StableDiffusion3PAGImg2ImgPipeline, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
PipelineTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusion3PAGImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin): |
|
pipeline_class = StableDiffusion3PAGImg2ImgPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) - {"height", "width"} |
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
image_latens_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS |
|
|
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = SD3Transformer2DModel( |
|
sample_size=32, |
|
patch_size=1, |
|
in_channels=4, |
|
num_layers=2, |
|
attention_head_dim=8, |
|
num_attention_heads=4, |
|
caption_projection_dim=32, |
|
joint_attention_dim=32, |
|
pooled_projection_dim=64, |
|
out_channels=4, |
|
) |
|
clip_text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
|
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
block_out_channels=(4,), |
|
layers_per_block=1, |
|
latent_channels=4, |
|
norm_num_groups=1, |
|
use_quant_conv=False, |
|
use_post_quant_conv=False, |
|
shift_factor=0.0609, |
|
scaling_factor=1.5035, |
|
) |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
return { |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"text_encoder_2": text_encoder_2, |
|
"text_encoder_3": text_encoder_3, |
|
"tokenizer": tokenizer, |
|
"tokenizer_2": tokenizer_2, |
|
"tokenizer_3": tokenizer_3, |
|
"transformer": transformer, |
|
"vae": vae, |
|
} |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image / 2 + 0.5 |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
"pag_scale": 0.7, |
|
} |
|
return inputs |
|
|
|
def test_pag_disable_enable(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe_sd = StableDiffusion3Img2ImgPipeline(**components) |
|
pipe_sd = pipe_sd.to(device) |
|
pipe_sd.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["pag_scale"] |
|
assert ( |
|
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters |
|
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." |
|
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] |
|
|
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["pag_scale"] = 0.0 |
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 |
|
|
|
def test_pag_inference(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["blocks.0"]) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe_pag(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == ( |
|
1, |
|
32, |
|
32, |
|
3, |
|
), f"the shape of the output image should be (1, 32, 32, 3) but got {image.shape}" |
|
|
|
expected_slice = np.array( |
|
[0.66063476, 0.44838923, 0.5484299, 0.7242875, 0.5970012, 0.6015729, 0.53080845, 0.52220416, 0.56397927] |
|
) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusion3PAGImg2ImgPipelineIntegrationTests(unittest.TestCase): |
|
pipeline_class = StableDiffusion3PAGImg2ImgPipeline |
|
repo_id = "stabilityai/stable-diffusion-3-medium-diffusers" |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs( |
|
self, device, generator_device="cpu", dtype=torch.float32, seed=0, guidance_scale=7.0, pag_scale=0.7 |
|
): |
|
img_url = ( |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png" |
|
) |
|
init_image = load_image(img_url) |
|
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "an astronaut in a space suit walking through a jungle", |
|
"generator": generator, |
|
"image": init_image, |
|
"num_inference_steps": 12, |
|
"strength": 0.6, |
|
"guidance_scale": guidance_scale, |
|
"pag_scale": pag_scale, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_pag_cfg(self): |
|
pipeline = AutoPipelineForImage2Image.from_pretrained( |
|
self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.17"] |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipeline(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
assert image.shape == (1, 1024, 1024, 3) |
|
expected_slice = np.array( |
|
[ |
|
0.16772461, |
|
0.17626953, |
|
0.18432617, |
|
0.17822266, |
|
0.18359375, |
|
0.17626953, |
|
0.17407227, |
|
0.17700195, |
|
0.17822266, |
|
] |
|
) |
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
), f"output is different from expected, {image_slice.flatten()}" |
|
|
|
def test_pag_uncond(self): |
|
pipeline = AutoPipelineForImage2Image.from_pretrained( |
|
self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.(4|17)"] |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device, guidance_scale=0.0, pag_scale=1.8) |
|
image = pipeline(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
assert image.shape == (1, 1024, 1024, 3) |
|
expected_slice = np.array( |
|
[0.1508789, 0.16210938, 0.17138672, 0.16210938, 0.17089844, 0.16137695, 0.16235352, 0.16430664, 0.16455078] |
|
) |
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
), f"output is different from expected, {image_slice.flatten()}" |
|
|