|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import Gemma2Config, Gemma2ForCausalLM, GemmaTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderDC, |
|
FlowMatchEulerDiscreteScheduler, |
|
SanaPAGPipeline, |
|
SanaPipeline, |
|
SanaTransformer2DModel, |
|
) |
|
from diffusers.utils.testing_utils import enable_full_determinism, torch_device |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin, to_np |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class SanaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = SanaPAGPipeline |
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"generator", |
|
"latents", |
|
"return_dict", |
|
"callback_on_step_end", |
|
"callback_on_step_end_tensor_inputs", |
|
] |
|
) |
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = SanaTransformer2DModel( |
|
patch_size=1, |
|
in_channels=4, |
|
out_channels=4, |
|
num_layers=2, |
|
num_attention_heads=2, |
|
attention_head_dim=4, |
|
num_cross_attention_heads=2, |
|
cross_attention_head_dim=4, |
|
cross_attention_dim=8, |
|
caption_channels=8, |
|
sample_size=32, |
|
) |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderDC( |
|
in_channels=3, |
|
latent_channels=4, |
|
attention_head_dim=2, |
|
encoder_block_types=( |
|
"ResBlock", |
|
"EfficientViTBlock", |
|
), |
|
decoder_block_types=( |
|
"ResBlock", |
|
"EfficientViTBlock", |
|
), |
|
encoder_block_out_channels=(8, 8), |
|
decoder_block_out_channels=(8, 8), |
|
encoder_qkv_multiscales=((), (5,)), |
|
decoder_qkv_multiscales=((), (5,)), |
|
encoder_layers_per_block=(1, 1), |
|
decoder_layers_per_block=[1, 1], |
|
downsample_block_type="conv", |
|
upsample_block_type="interpolate", |
|
decoder_norm_types="rms_norm", |
|
decoder_act_fns="silu", |
|
scaling_factor=0.41407, |
|
) |
|
|
|
torch.manual_seed(0) |
|
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_config = Gemma2Config( |
|
head_dim=16, |
|
hidden_size=32, |
|
initializer_range=0.02, |
|
intermediate_size=64, |
|
max_position_embeddings=8192, |
|
model_type="gemma2", |
|
num_attention_heads=2, |
|
num_hidden_layers=1, |
|
num_key_value_heads=2, |
|
vocab_size=8, |
|
attn_implementation="eager", |
|
) |
|
text_encoder = Gemma2ForCausalLM(text_encoder_config) |
|
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma") |
|
|
|
components = { |
|
"transformer": transformer, |
|
"vae": vae, |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "", |
|
"negative_prompt": "", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"pag_scale": 3.0, |
|
"height": 32, |
|
"width": 32, |
|
"max_sequence_length": 16, |
|
"output_type": "pt", |
|
"complex_human_instruction": None, |
|
} |
|
return inputs |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs)[0] |
|
generated_image = image[0] |
|
|
|
self.assertEqual(generated_image.shape, (3, 32, 32)) |
|
expected_image = torch.randn(3, 32, 32) |
|
max_diff = np.abs(generated_image - expected_image).max() |
|
self.assertLessEqual(max_diff, 1e10) |
|
|
|
def test_callback_inputs(self): |
|
sig = inspect.signature(self.pipeline_class.__call__) |
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters |
|
has_callback_step_end = "callback_on_step_end" in sig.parameters |
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
self.assertTrue( |
|
hasattr(pipe, "_callback_tensor_inputs"), |
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", |
|
) |
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs): |
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs): |
|
for tensor_name in pipe._callback_tensor_inputs: |
|
assert tensor_name in callback_kwargs |
|
|
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_subset |
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] |
|
output = pipe(**inputs)[0] |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_all |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
output = pipe(**inputs)[0] |
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): |
|
is_last = i == (pipe.num_timesteps - 1) |
|
if is_last: |
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
output = pipe(**inputs)[0] |
|
assert output.abs().sum() < 1e10 |
|
|
|
def test_attention_slicing_forward_pass( |
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 |
|
): |
|
if not self.test_attention_slicing: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_without_slicing = pipe(**inputs)[0] |
|
|
|
pipe.enable_attention_slicing(slice_size=1) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_slicing1 = pipe(**inputs)[0] |
|
|
|
pipe.enable_attention_slicing(slice_size=2) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_slicing2 = pipe(**inputs)[0] |
|
|
|
if test_max_difference: |
|
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() |
|
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() |
|
self.assertLess( |
|
max(max_diff1, max_diff2), |
|
expected_max_diff, |
|
"Attention slicing should not affect the inference results", |
|
) |
|
|
|
def test_pag_disable_enable(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe_sd = SanaPipeline(**components) |
|
pipe_sd = pipe_sd.to(device) |
|
pipe_sd.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["pag_scale"] |
|
assert ( |
|
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters |
|
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." |
|
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] |
|
|
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["pag_scale"] = 0.0 |
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 |
|
|
|
def test_pag_applied_layers(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn1" in k] |
|
original_attn_procs = pipe.transformer.attn_processors |
|
pag_layers = ["blocks.0", "blocks.1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) |
|
|
|
|
|
block_0_self_attn = ["transformer_blocks.0.attn1.processor"] |
|
pipe.transformer.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["blocks.0"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(block_0_self_attn) |
|
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["blocks.0.attn1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(block_0_self_attn) |
|
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["blocks.(0|1)"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert (len(pipe.pag_attn_processors)) == 2 |
|
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["blocks.0", r"blocks\.1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert len(pipe.pag_attn_processors) == 2 |
|
|
|
|
|
@unittest.skip( |
|
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error." |
|
) |
|
def test_inference_batch_consistent(self): |
|
pass |
|
|
|
@unittest.skip( |
|
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error." |
|
) |
|
def test_inference_batch_single_identical(self): |
|
pass |
|
|
|
def test_float16_inference(self): |
|
|
|
super().test_float16_inference(expected_max_diff=0.08) |
|
|