|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel |
|
|
|
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel |
|
from diffusers.utils.testing_utils import torch_device |
|
|
|
from ..test_pipelines_common import ( |
|
PipelineTesterMixin, |
|
check_qkv_fusion_matches_attn_procs_length, |
|
check_qkv_fusion_processors_exist, |
|
) |
|
|
|
|
|
class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin): |
|
pipeline_class = FluxControlPipeline |
|
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) |
|
batch_params = frozenset(["prompt"]) |
|
|
|
|
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = FluxTransformer2DModel( |
|
patch_size=1, |
|
in_channels=8, |
|
out_channels=4, |
|
num_layers=1, |
|
num_single_layers=1, |
|
attention_head_dim=16, |
|
num_attention_heads=2, |
|
joint_attention_dim=32, |
|
pooled_projection_dim=32, |
|
axes_dims_rope=[4, 4, 8], |
|
) |
|
clip_text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
|
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModel(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
block_out_channels=(4,), |
|
layers_per_block=1, |
|
latent_channels=1, |
|
norm_num_groups=1, |
|
use_quant_conv=False, |
|
use_post_quant_conv=False, |
|
shift_factor=0.0609, |
|
scaling_factor=1.5035, |
|
) |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
return { |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer": tokenizer, |
|
"tokenizer_2": tokenizer_2, |
|
"transformer": transformer, |
|
"vae": vae, |
|
} |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
control_image = Image.new("RGB", (16, 16), 0) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"control_image": control_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"height": 8, |
|
"width": 8, |
|
"max_sequence_length": 48, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_flux_different_prompts(self): |
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_same_prompt = pipe(**inputs).images[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = "a different prompt" |
|
output_different_prompts = pipe(**inputs).images[0] |
|
|
|
max_diff = np.abs(output_same_prompt - output_different_prompts).max() |
|
|
|
|
|
|
|
assert max_diff > 1e-6 |
|
|
|
def test_flux_prompt_embeds(self): |
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
output_with_prompt = pipe(**inputs).images[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = inputs.pop("prompt") |
|
|
|
(prompt_embeds, pooled_prompt_embeds, text_ids) = pipe.encode_prompt( |
|
prompt, |
|
prompt_2=None, |
|
device=torch_device, |
|
max_sequence_length=inputs["max_sequence_length"], |
|
) |
|
output_with_embeds = pipe( |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
**inputs, |
|
).images[0] |
|
|
|
max_diff = np.abs(output_with_prompt - output_with_embeds).max() |
|
assert max_diff < 1e-4 |
|
|
|
def test_fused_qkv_projections(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
original_image_slice = image[0, -3:, -3:, -1] |
|
|
|
|
|
|
|
pipe.transformer.fuse_qkv_projections() |
|
assert check_qkv_fusion_processors_exist( |
|
pipe.transformer |
|
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." |
|
assert check_qkv_fusion_matches_attn_procs_length( |
|
pipe.transformer, pipe.transformer.original_attn_processors |
|
), "Something wrong with the attention processors concerning the fused QKV projections." |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice_fused = image[0, -3:, -3:, -1] |
|
|
|
pipe.transformer.unfuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice_disabled = image[0, -3:, -3:, -1] |
|
|
|
assert np.allclose( |
|
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 |
|
), "Fusion of QKV projections shouldn't affect the outputs." |
|
assert np.allclose( |
|
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 |
|
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." |
|
assert np.allclose( |
|
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Original outputs should match when fused QKV projections are disabled." |
|
|
|
def test_flux_image_output_shape(self): |
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
height_width_pairs = [(32, 32), (72, 57)] |
|
for height, width in height_width_pairs: |
|
expected_height = height - height % (pipe.vae_scale_factor * 2) |
|
expected_width = width - width % (pipe.vae_scale_factor * 2) |
|
|
|
inputs.update({"height": height, "width": width}) |
|
image = pipe(**inputs).images[0] |
|
output_height, output_width, _ = image.shape |
|
assert (output_height, output_width) == (expected_height, expected_width) |
|
|