|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
from typing import Optional |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
FlowMatchEulerDiscreteScheduler, |
|
SD3Transformer2DModel, |
|
StableDiffusion3ControlNetPipeline, |
|
) |
|
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel |
|
from diffusers.utils import load_image |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
numpy_cosine_similarity_distance, |
|
require_big_gpu_with_torch_cuda, |
|
slow, |
|
torch_device, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): |
|
pipeline_class = StableDiffusion3ControlNetPipeline |
|
params = frozenset( |
|
[ |
|
"prompt", |
|
"height", |
|
"width", |
|
"guidance_scale", |
|
"negative_prompt", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
] |
|
) |
|
batch_params = frozenset(["prompt", "negative_prompt"]) |
|
|
|
def get_dummy_components( |
|
self, num_controlnet_layers: int = 3, qk_norm: Optional[str] = "rms_norm", use_dual_attention=False |
|
): |
|
torch.manual_seed(0) |
|
transformer = SD3Transformer2DModel( |
|
sample_size=32, |
|
patch_size=1, |
|
in_channels=8, |
|
num_layers=4, |
|
attention_head_dim=8, |
|
num_attention_heads=4, |
|
joint_attention_dim=32, |
|
caption_projection_dim=32, |
|
pooled_projection_dim=64, |
|
out_channels=8, |
|
qk_norm=qk_norm, |
|
dual_attention_layers=() if not use_dual_attention else (0, 1), |
|
) |
|
|
|
torch.manual_seed(0) |
|
controlnet = SD3ControlNetModel( |
|
sample_size=32, |
|
patch_size=1, |
|
in_channels=8, |
|
num_layers=num_controlnet_layers, |
|
attention_head_dim=8, |
|
num_attention_heads=4, |
|
joint_attention_dim=32, |
|
caption_projection_dim=32, |
|
pooled_projection_dim=64, |
|
out_channels=8, |
|
qk_norm=qk_norm, |
|
dual_attention_layers=() if not use_dual_attention else (0,), |
|
) |
|
|
|
clip_text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
|
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
block_out_channels=(4,), |
|
layers_per_block=1, |
|
latent_channels=8, |
|
norm_num_groups=1, |
|
use_quant_conv=False, |
|
use_post_quant_conv=False, |
|
shift_factor=0.0609, |
|
scaling_factor=1.5035, |
|
) |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
return { |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"text_encoder_2": text_encoder_2, |
|
"text_encoder_3": text_encoder_3, |
|
"tokenizer": tokenizer, |
|
"tokenizer_2": tokenizer_2, |
|
"tokenizer_3": tokenizer_3, |
|
"transformer": transformer, |
|
"vae": vae, |
|
"controlnet": controlnet, |
|
} |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
control_image = randn_tensor( |
|
(1, 3, 32, 32), |
|
generator=generator, |
|
device=torch.device(device), |
|
dtype=torch.float16, |
|
) |
|
|
|
controlnet_conditioning_scale = 0.5 |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
"control_image": control_image, |
|
"controlnet_conditioning_scale": controlnet_conditioning_scale, |
|
} |
|
|
|
return inputs |
|
|
|
def run_pipe(self, components, use_sd35=False): |
|
sd_pipe = StableDiffusion3ControlNetPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
if not use_sd35: |
|
expected_slice = np.array([0.5767, 0.7100, 0.5981, 0.5674, 0.5952, 0.4102, 0.5093, 0.5044, 0.6030]) |
|
else: |
|
expected_slice = np.array([1.0000, 0.9072, 0.4209, 0.2744, 0.5737, 0.3840, 0.6113, 0.6250, 0.6328]) |
|
|
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f"Expected: {expected_slice}, got: {image_slice.flatten()}" |
|
|
|
def test_controlnet_sd3(self): |
|
components = self.get_dummy_components() |
|
self.run_pipe(components) |
|
|
|
def test_controlnet_sd35(self): |
|
components = self.get_dummy_components(num_controlnet_layers=1, qk_norm="rms_norm", use_dual_attention=True) |
|
self.run_pipe(components, use_sd35=True) |
|
|
|
@unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention") |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
pass |
|
|
|
|
|
@slow |
|
@require_big_gpu_with_torch_cuda |
|
@pytest.mark.big_gpu_with_torch_cuda |
|
class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase): |
|
pipeline_class = StableDiffusion3ControlNetPipeline |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_canny(self): |
|
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16) |
|
pipe = StableDiffusion3ControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image" |
|
n_prompt = "NSFW, nude, naked, porn, ugly" |
|
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") |
|
|
|
output = pipe( |
|
prompt, |
|
negative_prompt=n_prompt, |
|
control_image=control_image, |
|
controlnet_conditioning_scale=0.5, |
|
guidance_scale=5.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
generator=generator, |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (1024, 1024, 3) |
|
|
|
original_image = image[-3:, -3:, -1].flatten() |
|
|
|
expected_image = np.array([0.7314, 0.7075, 0.6611, 0.7539, 0.7563, 0.6650, 0.6123, 0.7275, 0.7222]) |
|
|
|
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 |
|
|
|
def test_pose(self): |
|
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16) |
|
pipe = StableDiffusion3ControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image' |
|
n_prompt = "NSFW, nude, naked, porn, ugly" |
|
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg") |
|
|
|
output = pipe( |
|
prompt, |
|
negative_prompt=n_prompt, |
|
control_image=control_image, |
|
controlnet_conditioning_scale=0.5, |
|
guidance_scale=5.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
generator=generator, |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (1024, 1024, 3) |
|
|
|
original_image = image[-3:, -3:, -1].flatten() |
|
expected_image = np.array([0.9048, 0.8740, 0.8936, 0.8516, 0.8799, 0.9360, 0.8379, 0.8408, 0.8652]) |
|
|
|
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 |
|
|
|
def test_tile(self): |
|
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile", torch_dtype=torch.float16) |
|
pipe = StableDiffusion3ControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image' |
|
n_prompt = "NSFW, nude, naked, porn, ugly" |
|
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg") |
|
|
|
output = pipe( |
|
prompt, |
|
negative_prompt=n_prompt, |
|
control_image=control_image, |
|
controlnet_conditioning_scale=0.5, |
|
guidance_scale=5.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
generator=generator, |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (1024, 1024, 3) |
|
|
|
original_image = image[-3:, -3:, -1].flatten() |
|
expected_image = np.array([0.6699, 0.6836, 0.6226, 0.6572, 0.7310, 0.6646, 0.6650, 0.6694, 0.6011]) |
|
|
|
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 |
|
|
|
def test_multi_controlnet(self): |
|
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16) |
|
controlnet = SD3MultiControlNetModel([controlnet, controlnet]) |
|
|
|
pipe = StableDiffusion3ControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image" |
|
n_prompt = "NSFW, nude, naked, porn, ugly" |
|
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") |
|
|
|
output = pipe( |
|
prompt, |
|
negative_prompt=n_prompt, |
|
control_image=[control_image, control_image], |
|
controlnet_conditioning_scale=[0.25, 0.25], |
|
guidance_scale=5.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
generator=generator, |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (1024, 1024, 3) |
|
|
|
original_image = image[-3:, -3:, -1].flatten() |
|
expected_image = np.array([0.7207, 0.7041, 0.6543, 0.7500, 0.7490, 0.6592, 0.6001, 0.7168, 0.7231]) |
|
|
|
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 |
|
|