|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Adapted from |
|
https://github.com/huggingface/transformers/blob/c409cd81777fb27aadc043ed3d8339dbc020fb3b/src/transformers/quantizers/quantizer_bnb_4bit.py |
|
""" |
|
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union |
|
|
|
from ...utils import get_module_from_name |
|
from ..base import DiffusersQuantizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ...models.modeling_utils import ModelMixin |
|
|
|
from ...utils import ( |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
is_bitsandbytes_available, |
|
is_bitsandbytes_version, |
|
is_torch_available, |
|
logging, |
|
) |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class BnB4BitDiffusersQuantizer(DiffusersQuantizer): |
|
""" |
|
4-bit quantization from bitsandbytes.py quantization method: |
|
before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the |
|
layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call saving: |
|
from state dict, as usual; saves weights and `quant_state` components |
|
loading: |
|
need to locate `quant_state` components and pass to Param4bit constructor |
|
""" |
|
|
|
use_keep_in_fp32_modules = True |
|
requires_calibration = False |
|
|
|
def __init__(self, quantization_config, **kwargs): |
|
super().__init__(quantization_config, **kwargs) |
|
|
|
if self.quantization_config.llm_int8_skip_modules is not None: |
|
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules |
|
|
|
def validate_environment(self, *args, **kwargs): |
|
if not torch.cuda.is_available(): |
|
raise RuntimeError("No GPU found. A GPU is needed for quantization.") |
|
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): |
|
raise ImportError( |
|
"Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>=0.26.0'`" |
|
) |
|
if not is_bitsandbytes_available() or is_bitsandbytes_version("<", "0.43.3"): |
|
raise ImportError( |
|
"Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" |
|
) |
|
|
|
if kwargs.get("from_flax", False): |
|
raise ValueError( |
|
"Converting into 4-bit weights from flax weights is currently not supported, please make" |
|
" sure the weights are in PyTorch format." |
|
) |
|
|
|
device_map = kwargs.get("device_map", None) |
|
if ( |
|
device_map is not None |
|
and isinstance(device_map, dict) |
|
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload |
|
): |
|
device_map_without_no_convert = { |
|
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert |
|
} |
|
if "cpu" in device_map_without_no_convert.values() or "disk" in device_map_without_no_convert.values(): |
|
raise ValueError( |
|
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " |
|
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " |
|
"in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to " |
|
"`from_pretrained`. Check " |
|
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " |
|
"for more details. " |
|
) |
|
|
|
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": |
|
if target_dtype != torch.int8: |
|
from accelerate.utils import CustomDtype |
|
|
|
logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization") |
|
return CustomDtype.INT4 |
|
else: |
|
raise ValueError(f"Wrong `target_dtype` ({target_dtype}) provided.") |
|
|
|
def check_if_quantized_param( |
|
self, |
|
model: "ModelMixin", |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
state_dict: Dict[str, Any], |
|
**kwargs, |
|
) -> bool: |
|
import bitsandbytes as bnb |
|
|
|
module, tensor_name = get_module_from_name(model, param_name) |
|
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit): |
|
|
|
return True |
|
elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias": |
|
|
|
|
|
return True |
|
else: |
|
return False |
|
|
|
def create_quantized_param( |
|
self, |
|
model: "ModelMixin", |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
target_device: "torch.device", |
|
state_dict: Dict[str, Any], |
|
unexpected_keys: Optional[List[str]] = None, |
|
): |
|
import bitsandbytes as bnb |
|
|
|
module, tensor_name = get_module_from_name(model, param_name) |
|
|
|
if tensor_name not in module._parameters: |
|
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") |
|
|
|
old_value = getattr(module, tensor_name) |
|
|
|
if tensor_name == "bias": |
|
if param_value is None: |
|
new_value = old_value.to(target_device) |
|
else: |
|
new_value = param_value.to(target_device) |
|
|
|
new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad) |
|
module._parameters[tensor_name] = new_value |
|
return |
|
|
|
if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit): |
|
raise ValueError("this function only loads `Linear4bit components`") |
|
if ( |
|
old_value.device == torch.device("meta") |
|
and target_device not in ["meta", torch.device("meta")] |
|
and param_value is None |
|
): |
|
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") |
|
|
|
|
|
if self.pre_quantized: |
|
|
|
|
|
|
|
if not self.is_serializable: |
|
raise ValueError( |
|
"Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. " |
|
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." |
|
) |
|
|
|
if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and ( |
|
param_name + ".quant_state.bitsandbytes__nf4" not in state_dict |
|
): |
|
raise ValueError( |
|
f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components." |
|
) |
|
|
|
quantized_stats = {} |
|
for k, v in state_dict.items(): |
|
|
|
|
|
if param_name + "." in k and k.startswith(param_name): |
|
quantized_stats[k] = v |
|
if unexpected_keys is not None and k in unexpected_keys: |
|
unexpected_keys.remove(k) |
|
|
|
new_value = bnb.nn.Params4bit.from_prequantized( |
|
data=param_value, |
|
quantized_stats=quantized_stats, |
|
requires_grad=False, |
|
device=target_device, |
|
) |
|
else: |
|
new_value = param_value.to("cpu") |
|
kwargs = old_value.__dict__ |
|
new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device) |
|
|
|
module._parameters[tensor_name] = new_value |
|
|
|
def check_quantized_param_shape(self, param_name, current_param_shape, loaded_param_shape): |
|
n = current_param_shape.numel() |
|
inferred_shape = (n,) if "bias" in param_name else ((n + 1) // 2, 1) |
|
if loaded_param_shape != inferred_shape: |
|
raise ValueError( |
|
f"Expected the flattened shape of the current param ({param_name}) to be {loaded_param_shape} but is {inferred_shape}." |
|
) |
|
else: |
|
return True |
|
|
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: |
|
|
|
max_memory = {key: val * 0.90 for key, val in max_memory.items()} |
|
return max_memory |
|
|
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": |
|
if torch_dtype is None: |
|
|
|
logger.info( |
|
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " |
|
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " |
|
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" |
|
" torch_dtype=torch.float16 to remove this warning.", |
|
torch_dtype, |
|
) |
|
torch_dtype = torch.float16 |
|
return torch_dtype |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _process_model_before_weight_loading( |
|
self, |
|
model: "ModelMixin", |
|
device_map, |
|
keep_in_fp32_modules: List[str] = [], |
|
**kwargs, |
|
): |
|
from .utils import replace_with_bnb_linear |
|
|
|
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload |
|
|
|
|
|
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules |
|
|
|
if not isinstance(self.modules_to_not_convert, list): |
|
self.modules_to_not_convert = [self.modules_to_not_convert] |
|
|
|
self.modules_to_not_convert.extend(keep_in_fp32_modules) |
|
|
|
|
|
if isinstance(device_map, dict) and len(device_map.keys()) > 1: |
|
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] |
|
|
|
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: |
|
raise ValueError( |
|
"If you want to offload some keys to `cpu` or `disk`, you need to set " |
|
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " |
|
" converted to 8-bit but kept in 32-bit." |
|
) |
|
self.modules_to_not_convert.extend(keys_on_cpu) |
|
|
|
|
|
|
|
|
|
|
|
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] |
|
|
|
model = replace_with_bnb_linear( |
|
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config |
|
) |
|
model.config.quantization_config = self.quantization_config |
|
|
|
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): |
|
model.is_loaded_in_4bit = True |
|
model.is_4bit_serializable = self.is_serializable |
|
return model |
|
|
|
@property |
|
def is_serializable(self): |
|
|
|
return True |
|
|
|
@property |
|
def is_trainable(self) -> bool: |
|
|
|
return True |
|
|
|
def _dequantize(self, model): |
|
from .utils import dequantize_and_replace |
|
|
|
is_model_on_cpu = model.device.type == "cpu" |
|
if is_model_on_cpu: |
|
logger.info( |
|
"Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device." |
|
) |
|
model.to(torch.cuda.current_device()) |
|
|
|
model = dequantize_and_replace( |
|
model, self.modules_to_not_convert, quantization_config=self.quantization_config |
|
) |
|
if is_model_on_cpu: |
|
model.to("cpu") |
|
return model |
|
|
|
|
|
class BnB8BitDiffusersQuantizer(DiffusersQuantizer): |
|
""" |
|
8-bit quantization from bitsandbytes quantization method: |
|
before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the |
|
layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call |
|
saving: |
|
from state dict, as usual; saves weights and 'SCB' component |
|
loading: |
|
need to locate SCB component and pass to the Linear8bitLt object |
|
""" |
|
|
|
use_keep_in_fp32_modules = True |
|
requires_calibration = False |
|
|
|
def __init__(self, quantization_config, **kwargs): |
|
super().__init__(quantization_config, **kwargs) |
|
|
|
if self.quantization_config.llm_int8_skip_modules is not None: |
|
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules |
|
|
|
def validate_environment(self, *args, **kwargs): |
|
if not torch.cuda.is_available(): |
|
raise RuntimeError("No GPU found. A GPU is needed for quantization.") |
|
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): |
|
raise ImportError( |
|
"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install 'accelerate>=0.26.0'`" |
|
) |
|
if not is_bitsandbytes_available() or is_bitsandbytes_version("<", "0.43.3"): |
|
raise ImportError( |
|
"Using `bitsandbytes` 8-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" |
|
) |
|
|
|
if kwargs.get("from_flax", False): |
|
raise ValueError( |
|
"Converting into 8-bit weights from flax weights is currently not supported, please make" |
|
" sure the weights are in PyTorch format." |
|
) |
|
|
|
device_map = kwargs.get("device_map", None) |
|
if ( |
|
device_map is not None |
|
and isinstance(device_map, dict) |
|
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload |
|
): |
|
device_map_without_no_convert = { |
|
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert |
|
} |
|
if "cpu" in device_map_without_no_convert.values() or "disk" in device_map_without_no_convert.values(): |
|
raise ValueError( |
|
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " |
|
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " |
|
"in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to " |
|
"`from_pretrained`. Check " |
|
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " |
|
"for more details. " |
|
) |
|
|
|
|
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: |
|
|
|
max_memory = {key: val * 0.90 for key, val in max_memory.items()} |
|
return max_memory |
|
|
|
|
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": |
|
if torch_dtype is None: |
|
|
|
logger.info( |
|
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " |
|
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " |
|
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" |
|
" torch_dtype=torch.float16 to remove this warning.", |
|
torch_dtype, |
|
) |
|
torch_dtype = torch.float16 |
|
return torch_dtype |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": |
|
if target_dtype != torch.int8: |
|
logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization") |
|
return torch.int8 |
|
|
|
def check_if_quantized_param( |
|
self, |
|
model: "ModelMixin", |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
state_dict: Dict[str, Any], |
|
**kwargs, |
|
): |
|
import bitsandbytes as bnb |
|
|
|
module, tensor_name = get_module_from_name(model, param_name) |
|
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params): |
|
if self.pre_quantized: |
|
if param_name.replace("weight", "SCB") not in state_dict.keys(): |
|
raise ValueError("Missing quantization component `SCB`") |
|
if param_value.dtype != torch.int8: |
|
raise ValueError( |
|
f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`." |
|
) |
|
return True |
|
return False |
|
|
|
def create_quantized_param( |
|
self, |
|
model: "ModelMixin", |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
target_device: "torch.device", |
|
state_dict: Dict[str, Any], |
|
unexpected_keys: Optional[List[str]] = None, |
|
): |
|
import bitsandbytes as bnb |
|
|
|
fp16_statistics_key = param_name.replace("weight", "SCB") |
|
fp16_weights_format_key = param_name.replace("weight", "weight_format") |
|
|
|
fp16_statistics = state_dict.get(fp16_statistics_key, None) |
|
fp16_weights_format = state_dict.get(fp16_weights_format_key, None) |
|
|
|
module, tensor_name = get_module_from_name(model, param_name) |
|
if tensor_name not in module._parameters: |
|
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") |
|
|
|
old_value = getattr(module, tensor_name) |
|
|
|
if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params): |
|
raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.") |
|
if ( |
|
old_value.device == torch.device("meta") |
|
and target_device not in ["meta", torch.device("meta")] |
|
and param_value is None |
|
): |
|
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") |
|
|
|
new_value = param_value.to("cpu") |
|
if self.pre_quantized and not self.is_serializable: |
|
raise ValueError( |
|
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " |
|
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." |
|
) |
|
|
|
kwargs = old_value.__dict__ |
|
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device) |
|
|
|
module._parameters[tensor_name] = new_value |
|
if fp16_statistics is not None: |
|
setattr(module.weight, "SCB", fp16_statistics.to(target_device)) |
|
if unexpected_keys is not None: |
|
unexpected_keys.remove(fp16_statistics_key) |
|
|
|
|
|
|
|
if fp16_weights_format is not None and unexpected_keys is not None: |
|
unexpected_keys.remove(fp16_weights_format_key) |
|
|
|
|
|
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): |
|
model.is_loaded_in_8bit = True |
|
model.is_8bit_serializable = self.is_serializable |
|
return model |
|
|
|
|
|
def _process_model_before_weight_loading( |
|
self, |
|
model: "ModelMixin", |
|
device_map, |
|
keep_in_fp32_modules: List[str] = [], |
|
**kwargs, |
|
): |
|
from .utils import replace_with_bnb_linear |
|
|
|
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload |
|
|
|
|
|
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules |
|
|
|
if not isinstance(self.modules_to_not_convert, list): |
|
self.modules_to_not_convert = [self.modules_to_not_convert] |
|
|
|
self.modules_to_not_convert.extend(keep_in_fp32_modules) |
|
|
|
|
|
if isinstance(device_map, dict) and len(device_map.keys()) > 1: |
|
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] |
|
|
|
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: |
|
raise ValueError( |
|
"If you want to offload some keys to `cpu` or `disk`, you need to set " |
|
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " |
|
" converted to 8-bit but kept in 32-bit." |
|
) |
|
self.modules_to_not_convert.extend(keys_on_cpu) |
|
|
|
|
|
|
|
|
|
|
|
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] |
|
|
|
model = replace_with_bnb_linear( |
|
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config |
|
) |
|
model.config.quantization_config = self.quantization_config |
|
|
|
@property |
|
|
|
def is_serializable(self): |
|
|
|
return True |
|
|
|
@property |
|
|
|
def is_trainable(self) -> bool: |
|
|
|
return True |
|
|
|
def _dequantize(self, model): |
|
from .utils import dequantize_and_replace |
|
|
|
model = dequantize_and_replace( |
|
model, self.modules_to_not_convert, quantization_config=self.quantization_config |
|
) |
|
return model |
|
|