|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
from ...image_processor import PipelineImageInput |
|
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin |
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel |
|
from ...models.lora import adjust_lora_scale_text_encoder |
|
from ...models.unets.unet_motion_model import MotionAdapter |
|
from ...schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from ...utils import ( |
|
USE_PEFT_BACKEND, |
|
BaseOutput, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ...video_processor import VideoProcessor |
|
from ..free_init_utils import FreeInitMixin |
|
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import EulerDiscreteScheduler, MotionAdapter, PIAPipeline |
|
>>> from diffusers.utils import export_to_gif, load_image |
|
|
|
>>> adapter = MotionAdapter.from_pretrained("openmmlab/PIA-condition-adapter") |
|
>>> pipe = PIAPipeline.from_pretrained( |
|
... "SG161222/Realistic_Vision_V6.0_B1_noVAE", motion_adapter=adapter, torch_dtype=torch.float16 |
|
... ) |
|
|
|
>>> pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) |
|
>>> image = load_image( |
|
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true" |
|
... ) |
|
>>> image = image.resize((512, 512)) |
|
>>> prompt = "cat in a hat" |
|
>>> negative_prompt = "wrong white balance, dark, sketches, worst quality, low quality, deformed, distorted" |
|
>>> generator = torch.Generator("cpu").manual_seed(0) |
|
>>> output = pipe(image=image, prompt=prompt, negative_prompt=negative_prompt, generator=generator) |
|
>>> frames = output.frames[0] |
|
>>> export_to_gif(frames, "pia-animation.gif") |
|
``` |
|
""" |
|
|
|
RANGE_LIST = [ |
|
[1.0, 0.9, 0.85, 0.85, 0.85, 0.8], |
|
[1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75], |
|
[1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5], |
|
[1.0, 0.9, 0.85, 0.85, 0.85, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.85, 0.85, 0.9, 1.0], |
|
[1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75, 0.75, 0.75, 0.75, 0.75, 0.78, 0.79, 0.8, 0.8, 1.0], |
|
[1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5, 0.6, 0.7, 0.7, 0.7, 0.7, 0.8, 1.0], |
|
[0.5, 0.4, 0.4, 0.4, 0.35, 0.3], |
|
[0.5, 0.4, 0.4, 0.4, 0.35, 0.35, 0.3, 0.25, 0.2], |
|
[0.5, 0.2], |
|
] |
|
|
|
|
|
def prepare_mask_coef_by_statistics(num_frames: int, cond_frame: int, motion_scale: int): |
|
assert num_frames > 0, "video_length should be greater than 0" |
|
|
|
assert num_frames > cond_frame, "video_length should be greater than cond_frame" |
|
|
|
range_list = RANGE_LIST |
|
|
|
assert motion_scale < len(range_list), f"motion_scale type{motion_scale} not implemented" |
|
|
|
coef = range_list[motion_scale] |
|
coef = coef + ([coef[-1]] * (num_frames - len(coef))) |
|
|
|
order = [abs(i - cond_frame) for i in range(num_frames)] |
|
coef = [coef[order[i]] for i in range(num_frames)] |
|
|
|
return coef |
|
|
|
|
|
@dataclass |
|
class PIAPipelineOutput(BaseOutput): |
|
r""" |
|
Output class for PIAPipeline. |
|
|
|
Args: |
|
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): |
|
Nested list of length `batch_size` with denoised PIL image sequences of length `num_frames`, NumPy array of |
|
shape `(batch_size, num_frames, channels, height, width, Torch tensor of shape `(batch_size, num_frames, |
|
channels, height, width)`. |
|
""" |
|
|
|
frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] |
|
|
|
|
|
class PIAPipeline( |
|
DiffusionPipeline, |
|
StableDiffusionMixin, |
|
TextualInversionLoaderMixin, |
|
IPAdapterMixin, |
|
StableDiffusionLoraLoaderMixin, |
|
FromSingleFileMixin, |
|
FreeInitMixin, |
|
): |
|
r""" |
|
Pipeline for text-to-video generation. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer (`CLIPTokenizer`): |
|
A [`~transformers.CLIPTokenizer`] to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. |
|
motion_adapter ([`MotionAdapter`]): |
|
A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" |
|
_optional_components = ["feature_extractor", "image_encoder", "motion_adapter"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: Union[UNet2DConditionModel, UNetMotionModel], |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
motion_adapter: Optional[MotionAdapter] = None, |
|
feature_extractor: CLIPImageProcessor = None, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
): |
|
super().__init__() |
|
if isinstance(unet, UNet2DConditionModel): |
|
unet = UNetMotionModel.from_unet2d(unet, motion_adapter) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
motion_adapter=motion_adapter, |
|
scheduler=scheduler, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor) |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
|
batch_size, channels, num_frames, height, width = latents.shape |
|
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) |
|
|
|
image = self.vae.decode(latents).sample |
|
video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4) |
|
|
|
video = video.float() |
|
return video |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
ip_adapter_image=None, |
|
ip_adapter_image_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: |
|
raise ValueError( |
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." |
|
) |
|
|
|
if ip_adapter_image_embeds is not None: |
|
if not isinstance(ip_adapter_image_embeds, list): |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" |
|
) |
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" |
|
) |
|
|
|
|
|
def prepare_ip_adapter_image_embeds( |
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance |
|
): |
|
image_embeds = [] |
|
if do_classifier_free_guidance: |
|
negative_image_embeds = [] |
|
if ip_adapter_image_embeds is None: |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): |
|
raise ValueError( |
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
) |
|
|
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers |
|
): |
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) |
|
single_image_embeds, single_negative_image_embeds = self.encode_image( |
|
single_ip_adapter_image, device, 1, output_hidden_state |
|
) |
|
|
|
image_embeds.append(single_image_embeds[None, :]) |
|
if do_classifier_free_guidance: |
|
negative_image_embeds.append(single_negative_image_embeds[None, :]) |
|
else: |
|
for single_image_embeds in ip_adapter_image_embeds: |
|
if do_classifier_free_guidance: |
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) |
|
negative_image_embeds.append(single_negative_image_embeds) |
|
image_embeds.append(single_image_embeds) |
|
|
|
ip_adapter_image_embeds = [] |
|
for i, single_image_embeds in enumerate(image_embeds): |
|
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) |
|
if do_classifier_free_guidance: |
|
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) |
|
|
|
single_image_embeds = single_image_embeds.to(device=device) |
|
ip_adapter_image_embeds.append(single_image_embeds) |
|
|
|
return ip_adapter_image_embeds |
|
|
|
|
|
def prepare_latents( |
|
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_masked_condition( |
|
self, |
|
image, |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
motion_scale=0, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
_, _, _, scaled_height, scaled_width = shape |
|
|
|
image = self.video_processor.preprocess(image) |
|
image = image.to(device, dtype) |
|
|
|
if isinstance(generator, list): |
|
image_latent = [ |
|
self.vae.encode(image[k : k + 1]).latent_dist.sample(generator[k]) for k in range(batch_size) |
|
] |
|
image_latent = torch.cat(image_latent, dim=0) |
|
else: |
|
image_latent = self.vae.encode(image).latent_dist.sample(generator) |
|
|
|
image_latent = image_latent.to(device=device, dtype=dtype) |
|
image_latent = torch.nn.functional.interpolate(image_latent, size=[scaled_height, scaled_width]) |
|
image_latent_padding = image_latent.clone() * self.vae.config.scaling_factor |
|
|
|
mask = torch.zeros((batch_size, 1, num_frames, scaled_height, scaled_width)).to(device=device, dtype=dtype) |
|
mask_coef = prepare_mask_coef_by_statistics(num_frames, 0, motion_scale) |
|
masked_image = torch.zeros(batch_size, 4, num_frames, scaled_height, scaled_width).to( |
|
device=device, dtype=self.unet.dtype |
|
) |
|
for f in range(num_frames): |
|
mask[:, :, f, :, :] = mask_coef[f] |
|
masked_image[:, :, f, :, :] = image_latent_padding.clone() |
|
|
|
mask = torch.cat([mask] * 2) if self.do_classifier_free_guidance else mask |
|
masked_image = torch.cat([masked_image] * 2) if self.do_classifier_free_guidance else masked_image |
|
|
|
return mask, masked_image |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
if hasattr(self.scheduler, "set_begin_index"): |
|
self.scheduler.set_begin_index(t_start * self.scheduler.order) |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
image: PipelineImageInput, |
|
prompt: Union[str, List[str]] = None, |
|
strength: float = 1.0, |
|
num_frames: Optional[int] = 16, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
motion_scale: int = 0, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
image (`PipelineImageInput`): |
|
The input image to be used for video generation. |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
strength (`float`, *optional*, defaults to 1.0): |
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated video. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated video. |
|
num_frames (`int`, *optional*, defaults to 16): |
|
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds |
|
amounts to 2 seconds of video. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape |
|
`(batch_size, num_channel, num_frames, height, width)`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): |
|
Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should |
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
motion_scale: (`int`, *optional*, defaults to 0): |
|
Parameter that controls the amount and type of motion that is added to the image. Increasing the value |
|
increases the amount of motion, while specific ranges of values control the type of motion that is |
|
added. Must be between 0 and 8. Set between 0-2 to only increase the amount of motion. Set between 3-5 |
|
to create looping motion. Set between 6-8 to perform motion with image style transfer. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead |
|
of a plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.pia.pipeline_pia.PIAPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.pia.pipeline_pia.PIAPipelineOutput`] is returned, otherwise a |
|
`tuple` is returned where the first element is a list with the generated frames. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
num_videos_per_prompt = 1 |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) |
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_videos_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
4, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents=latents, |
|
) |
|
mask, masked_image = self.prepare_masked_condition( |
|
image, |
|
batch_size * num_videos_per_prompt, |
|
4, |
|
num_frames=num_frames, |
|
height=height, |
|
width=width, |
|
dtype=self.unet.dtype, |
|
device=device, |
|
generator=generator, |
|
motion_scale=motion_scale, |
|
) |
|
if strength < 1.0: |
|
noise = randn_tensor(latents.shape, generator=generator, device=device, dtype=latents.dtype) |
|
latents = self.scheduler.add_noise(masked_image[0], noise, latent_timestep) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
added_cond_kwargs = ( |
|
{"image_embeds": image_embeds} |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None |
|
else None |
|
) |
|
|
|
|
|
num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 |
|
for free_init_iter in range(num_free_init_iters): |
|
if self.free_init_enabled: |
|
latents, timesteps = self._apply_free_init( |
|
latents, free_init_iter, num_inference_steps, device, latents.dtype, generator |
|
) |
|
|
|
self._num_timesteps = len(timesteps) |
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
|
|
with self.progress_bar(total=self._num_timesteps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image], dim=1) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
).sample |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
if output_type == "latent": |
|
video = latents |
|
else: |
|
video_tensor = self.decode_latents(latents) |
|
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return PIAPipelineOutput(frames=video) |
|
|