|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from transformers import BertTokenizer |
|
from transformers.activations import QuickGELUActivation as QuickGELU |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPooling, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
) |
|
from transformers.models.blip_2.configuration_blip_2 import Blip2Config, Blip2VisionConfig |
|
from transformers.models.blip_2.modeling_blip_2 import ( |
|
Blip2Encoder, |
|
Blip2PreTrainedModel, |
|
Blip2QFormerAttention, |
|
Blip2QFormerIntermediate, |
|
Blip2QFormerOutput, |
|
) |
|
from transformers.pytorch_utils import apply_chunking_to_forward |
|
from transformers.utils import ( |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
class Blip2TextEmbeddings(nn.Module): |
|
"""Construct the embeddings from word and position embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) |
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
|
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
position_ids=None, |
|
query_embeds=None, |
|
past_key_values_length=0, |
|
): |
|
if input_ids is not None: |
|
seq_length = input_ids.size()[1] |
|
else: |
|
seq_length = 0 |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length].clone() |
|
|
|
if input_ids is not None: |
|
embeddings = self.word_embeddings(input_ids) |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = embeddings + position_embeddings |
|
|
|
if query_embeds is not None: |
|
batch_size = embeddings.shape[0] |
|
|
|
query_embeds = query_embeds.repeat(batch_size, 1, 1) |
|
embeddings = torch.cat((query_embeds, embeddings), dim=1) |
|
else: |
|
embeddings = query_embeds |
|
embeddings = embeddings.to(query_embeds.dtype) |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
|
|
class Blip2VisionEmbeddings(nn.Module): |
|
def __init__(self, config: Blip2VisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches + 1 |
|
|
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) |
|
|
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: |
|
batch_size = pixel_values.shape[0] |
|
target_dtype = self.patch_embedding.weight.dtype |
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) |
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) |
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) |
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) |
|
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) |
|
return embeddings |
|
|
|
|
|
|
|
class Blip2QFormerEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[Blip2QFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
query_length=0, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
for i in range(self.config.num_hidden_layers): |
|
layer_module = self.layer[i] |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if getattr(self.config, "gradient_checkpointing", False) and torch.is_grad_enabled(): |
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions, query_length) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
query_length, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if layer_module.has_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class Blip2QFormerLayer(nn.Module): |
|
def __init__(self, config, layer_idx): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = Blip2QFormerAttention(config) |
|
|
|
self.layer_idx = layer_idx |
|
|
|
if layer_idx % config.cross_attention_frequency == 0: |
|
self.crossattention = Blip2QFormerAttention(config, is_cross_attention=True) |
|
self.has_cross_attention = True |
|
else: |
|
self.has_cross_attention = False |
|
|
|
self.intermediate = Blip2QFormerIntermediate(config) |
|
self.intermediate_query = Blip2QFormerIntermediate(config) |
|
self.output_query = Blip2QFormerOutput(config) |
|
self.output = Blip2QFormerOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
query_length=0, |
|
): |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:-1] |
|
|
|
present_key_value = self_attention_outputs[-1] |
|
|
|
if query_length > 0: |
|
query_attention_output = attention_output[:, :query_length, :] |
|
|
|
if self.has_cross_attention: |
|
if encoder_hidden_states is None: |
|
raise ValueError("encoder_hidden_states must be given for cross-attention layers") |
|
cross_attention_outputs = self.crossattention( |
|
query_attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
query_attention_output = cross_attention_outputs[0] |
|
|
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk_query, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
query_attention_output, |
|
) |
|
|
|
if attention_output.shape[1] > query_length: |
|
layer_output_text = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output[:, query_length:, :], |
|
) |
|
layer_output = torch.cat([layer_output, layer_output_text], dim=1) |
|
else: |
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output, |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
def feed_forward_chunk_query(self, attention_output): |
|
intermediate_output = self.intermediate_query(attention_output) |
|
layer_output = self.output_query(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
|
|
class ProjLayer(nn.Module): |
|
def __init__(self, in_dim, out_dim, hidden_dim, drop_p=0.1, eps=1e-12): |
|
super().__init__() |
|
|
|
|
|
self.dense1 = nn.Linear(in_dim, hidden_dim) |
|
self.act_fn = QuickGELU() |
|
self.dense2 = nn.Linear(hidden_dim, out_dim) |
|
self.dropout = nn.Dropout(drop_p) |
|
|
|
self.LayerNorm = nn.LayerNorm(out_dim, eps=eps) |
|
|
|
def forward(self, x): |
|
x_in = x |
|
|
|
x = self.LayerNorm(x) |
|
x = self.dropout(self.dense2(self.act_fn(self.dense1(x)))) + x_in |
|
|
|
return x |
|
|
|
|
|
|
|
class Blip2VisionModel(Blip2PreTrainedModel): |
|
main_input_name = "pixel_values" |
|
config_class = Blip2VisionConfig |
|
|
|
def __init__(self, config: Blip2VisionConfig): |
|
super().__init__(config) |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
self.embeddings = Blip2VisionEmbeddings(config) |
|
self.pre_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
self.encoder = Blip2Encoder(config) |
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
self.post_init() |
|
|
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Blip2VisionConfig) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
hidden_states = self.embeddings(pixel_values) |
|
hidden_states = self.pre_layernorm(hidden_states) |
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
last_hidden_state = encoder_outputs[0] |
|
last_hidden_state = self.post_layernorm(last_hidden_state) |
|
|
|
pooled_output = last_hidden_state[:, 0, :] |
|
pooled_output = self.post_layernorm(pooled_output) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
|
|
|
|
class Blip2QFormerModel(Blip2PreTrainedModel): |
|
""" |
|
Querying Transformer (Q-Former), used in BLIP-2. |
|
""" |
|
|
|
def __init__(self, config: Blip2Config): |
|
super().__init__(config) |
|
self.config = config |
|
self.embeddings = Blip2TextEmbeddings(config.qformer_config) |
|
self.visual_encoder = Blip2VisionModel(config.vision_config) |
|
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) |
|
if not hasattr(config, "tokenizer") or config.tokenizer is None: |
|
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="right") |
|
else: |
|
self.tokenizer = BertTokenizer.from_pretrained(config.tokenizer, truncation_side="right") |
|
self.tokenizer.add_special_tokens({"bos_token": "[DEC]"}) |
|
self.proj_layer = ProjLayer( |
|
in_dim=config.qformer_config.hidden_size, |
|
out_dim=config.qformer_config.hidden_size, |
|
hidden_dim=config.qformer_config.hidden_size * 4, |
|
drop_p=0.1, |
|
eps=1e-12, |
|
) |
|
|
|
self.encoder = Blip2QFormerEncoder(config.qformer_config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def get_extended_attention_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_shape: Tuple[int], |
|
device: torch.device, |
|
has_query: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. |
|
|
|
Arguments: |
|
attention_mask (`torch.Tensor`): |
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. |
|
input_shape (`Tuple[int]`): |
|
The shape of the input to the model. |
|
device (`torch.device`): |
|
The device of the input to the model. |
|
|
|
Returns: |
|
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. |
|
""" |
|
|
|
|
|
if attention_mask.dim() == 3: |
|
extended_attention_mask = attention_mask[:, None, :, :] |
|
elif attention_mask.dim() == 2: |
|
|
|
|
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
else: |
|
raise ValueError( |
|
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( |
|
input_shape, attention_mask.shape |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
return extended_attention_mask |
|
|
|
def forward( |
|
self, |
|
text_input=None, |
|
image_input=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of: |
|
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and |
|
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are |
|
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key |
|
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape |
|
`(batch_size, sequence_length)`. |
|
use_cache (`bool`, `optional`): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
|
|
text = self.tokenizer(text_input, return_tensors="pt", padding=True) |
|
text = text.to(self.device) |
|
input_ids = text.input_ids |
|
batch_size = input_ids.shape[0] |
|
query_atts = torch.ones((batch_size, self.query_tokens.size()[1]), dtype=torch.long).to(self.device) |
|
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1) |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
past_key_values_length = ( |
|
past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 |
|
) |
|
|
|
query_length = self.query_tokens.shape[1] |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
query_embeds=self.query_tokens, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
|
|
|
|
|
|
input_shape = embedding_output.size()[:-1] |
|
batch_size, seq_length = input_shape |
|
device = embedding_output.device |
|
|
|
image_embeds_frozen = self.visual_encoder(image_input).last_hidden_state |
|
|
|
encoder_hidden_states = image_embeds_frozen |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
|
|
|
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) |
|
|
|
|
|
|
|
if encoder_hidden_states is not None: |
|
if isinstance(encoder_hidden_states, list): |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() |
|
else: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
|
|
if isinstance(encoder_attention_mask, list): |
|
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] |
|
elif encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.qformer_config.num_hidden_layers) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
query_length=query_length, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = sequence_output[:, 0, :] |
|
|
|
if not return_dict: |
|
return self.proj_layer(sequence_output[:, :query_length, :]) |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|