|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Dict, Optional, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...utils import BaseOutput, logging |
|
from ..attention_processor import AttentionProcessor |
|
from ..embeddings import ( |
|
HunyuanCombinedTimestepTextSizeStyleEmbedding, |
|
PatchEmbed, |
|
PixArtAlphaTextProjection, |
|
) |
|
from ..modeling_utils import ModelMixin |
|
from ..transformers.hunyuan_transformer_2d import HunyuanDiTBlock |
|
from .controlnet import Tuple, zero_module |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class HunyuanControlNetOutput(BaseOutput): |
|
controlnet_block_samples: Tuple[torch.Tensor] |
|
|
|
|
|
class HunyuanDiT2DControlNetModel(ModelMixin, ConfigMixin): |
|
@register_to_config |
|
def __init__( |
|
self, |
|
conditioning_channels: int = 3, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
patch_size: Optional[int] = None, |
|
activation_fn: str = "gelu-approximate", |
|
sample_size=32, |
|
hidden_size=1152, |
|
transformer_num_layers: int = 40, |
|
mlp_ratio: float = 4.0, |
|
cross_attention_dim: int = 1024, |
|
cross_attention_dim_t5: int = 2048, |
|
pooled_projection_dim: int = 1024, |
|
text_len: int = 77, |
|
text_len_t5: int = 256, |
|
use_style_cond_and_image_meta_size: bool = True, |
|
): |
|
super().__init__() |
|
self.num_heads = num_attention_heads |
|
self.inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.text_embedder = PixArtAlphaTextProjection( |
|
in_features=cross_attention_dim_t5, |
|
hidden_size=cross_attention_dim_t5 * 4, |
|
out_features=cross_attention_dim, |
|
act_fn="silu_fp32", |
|
) |
|
|
|
self.text_embedding_padding = nn.Parameter( |
|
torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32) |
|
) |
|
|
|
self.pos_embed = PatchEmbed( |
|
height=sample_size, |
|
width=sample_size, |
|
in_channels=in_channels, |
|
embed_dim=hidden_size, |
|
patch_size=patch_size, |
|
pos_embed_type=None, |
|
) |
|
|
|
self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding( |
|
hidden_size, |
|
pooled_projection_dim=pooled_projection_dim, |
|
seq_len=text_len_t5, |
|
cross_attention_dim=cross_attention_dim_t5, |
|
use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size, |
|
) |
|
|
|
|
|
self.controlnet_blocks = nn.ModuleList([]) |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
HunyuanDiTBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=self.config.num_attention_heads, |
|
activation_fn=activation_fn, |
|
ff_inner_dim=int(self.inner_dim * mlp_ratio), |
|
cross_attention_dim=cross_attention_dim, |
|
qk_norm=True, |
|
skip=False, |
|
) |
|
for layer in range(transformer_num_layers // 2 - 1) |
|
] |
|
) |
|
self.input_block = zero_module(nn.Linear(hidden_size, hidden_size)) |
|
for _ in range(len(self.blocks)): |
|
controlnet_block = nn.Linear(hidden_size, hidden_size) |
|
controlnet_block = zero_module(controlnet_block) |
|
self.controlnet_blocks.append(controlnet_block) |
|
|
|
@property |
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the |
|
corresponding cross attention processor. This is strongly recommended when setting trainable attention |
|
processors. |
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
@classmethod |
|
def from_transformer( |
|
cls, transformer, conditioning_channels=3, transformer_num_layers=None, load_weights_from_transformer=True |
|
): |
|
config = transformer.config |
|
activation_fn = config.activation_fn |
|
attention_head_dim = config.attention_head_dim |
|
cross_attention_dim = config.cross_attention_dim |
|
cross_attention_dim_t5 = config.cross_attention_dim_t5 |
|
hidden_size = config.hidden_size |
|
in_channels = config.in_channels |
|
mlp_ratio = config.mlp_ratio |
|
num_attention_heads = config.num_attention_heads |
|
patch_size = config.patch_size |
|
sample_size = config.sample_size |
|
text_len = config.text_len |
|
text_len_t5 = config.text_len_t5 |
|
|
|
conditioning_channels = conditioning_channels |
|
transformer_num_layers = transformer_num_layers or config.transformer_num_layers |
|
|
|
controlnet = cls( |
|
conditioning_channels=conditioning_channels, |
|
transformer_num_layers=transformer_num_layers, |
|
activation_fn=activation_fn, |
|
attention_head_dim=attention_head_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
cross_attention_dim_t5=cross_attention_dim_t5, |
|
hidden_size=hidden_size, |
|
in_channels=in_channels, |
|
mlp_ratio=mlp_ratio, |
|
num_attention_heads=num_attention_heads, |
|
patch_size=patch_size, |
|
sample_size=sample_size, |
|
text_len=text_len, |
|
text_len_t5=text_len_t5, |
|
) |
|
if load_weights_from_transformer: |
|
key = controlnet.load_state_dict(transformer.state_dict(), strict=False) |
|
logger.warning(f"controlnet load from Hunyuan-DiT. missing_keys: {key[0]}") |
|
return controlnet |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
timestep, |
|
controlnet_cond: torch.Tensor, |
|
conditioning_scale: float = 1.0, |
|
encoder_hidden_states=None, |
|
text_embedding_mask=None, |
|
encoder_hidden_states_t5=None, |
|
text_embedding_mask_t5=None, |
|
image_meta_size=None, |
|
style=None, |
|
image_rotary_emb=None, |
|
return_dict=True, |
|
): |
|
""" |
|
The [`HunyuanDiT2DControlNetModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): |
|
The input tensor. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. |
|
controlnet_cond ( `torch.Tensor` ): |
|
The conditioning input to ControlNet. |
|
conditioning_scale ( `float` ): |
|
Indicate the conditioning scale. |
|
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. This is the output of `BertModel`. |
|
text_embedding_mask: torch.Tensor |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output |
|
of `BertModel`. |
|
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. |
|
text_embedding_mask_t5: torch.Tensor |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output |
|
of T5 Text Encoder. |
|
image_meta_size (torch.Tensor): |
|
Conditional embedding indicate the image sizes |
|
style: torch.Tensor: |
|
Conditional embedding indicate the style |
|
image_rotary_emb (`torch.Tensor`): |
|
The image rotary embeddings to apply on query and key tensors during attention calculation. |
|
return_dict: bool |
|
Whether to return a dictionary. |
|
""" |
|
|
|
height, width = hidden_states.shape[-2:] |
|
|
|
hidden_states = self.pos_embed(hidden_states) |
|
|
|
|
|
hidden_states = hidden_states + self.input_block(self.pos_embed(controlnet_cond)) |
|
|
|
temb = self.time_extra_emb( |
|
timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype |
|
) |
|
|
|
|
|
batch_size, sequence_length, _ = encoder_hidden_states_t5.shape |
|
encoder_hidden_states_t5 = self.text_embedder( |
|
encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1]) |
|
) |
|
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) |
|
|
|
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) |
|
text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) |
|
text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() |
|
|
|
encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) |
|
|
|
block_res_samples = () |
|
for layer, block in enumerate(self.blocks): |
|
hidden_states = block( |
|
hidden_states, |
|
temb=temb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
block_res_samples = block_res_samples + (hidden_states,) |
|
|
|
controlnet_block_res_samples = () |
|
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks): |
|
block_res_sample = controlnet_block(block_res_sample) |
|
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) |
|
|
|
|
|
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] |
|
|
|
if not return_dict: |
|
return (controlnet_block_res_samples,) |
|
|
|
return HunyuanControlNetOutput(controlnet_block_samples=controlnet_block_res_samples) |
|
|
|
|
|
class HunyuanDiT2DMultiControlNetModel(ModelMixin): |
|
r""" |
|
`HunyuanDiT2DMultiControlNetModel` wrapper class for Multi-HunyuanDiT2DControlNetModel |
|
|
|
This module is a wrapper for multiple instances of the `HunyuanDiT2DControlNetModel`. The `forward()` API is |
|
designed to be compatible with `HunyuanDiT2DControlNetModel`. |
|
|
|
Args: |
|
controlnets (`List[HunyuanDiT2DControlNetModel]`): |
|
Provides additional conditioning to the unet during the denoising process. You must set multiple |
|
`HunyuanDiT2DControlNetModel` as a list. |
|
""" |
|
|
|
def __init__(self, controlnets): |
|
super().__init__() |
|
self.nets = nn.ModuleList(controlnets) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
timestep, |
|
controlnet_cond: torch.Tensor, |
|
conditioning_scale: float = 1.0, |
|
encoder_hidden_states=None, |
|
text_embedding_mask=None, |
|
encoder_hidden_states_t5=None, |
|
text_embedding_mask_t5=None, |
|
image_meta_size=None, |
|
style=None, |
|
image_rotary_emb=None, |
|
return_dict=True, |
|
): |
|
""" |
|
The [`HunyuanDiT2DControlNetModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): |
|
The input tensor. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. |
|
controlnet_cond ( `torch.Tensor` ): |
|
The conditioning input to ControlNet. |
|
conditioning_scale ( `float` ): |
|
Indicate the conditioning scale. |
|
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. This is the output of `BertModel`. |
|
text_embedding_mask: torch.Tensor |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output |
|
of `BertModel`. |
|
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. |
|
text_embedding_mask_t5: torch.Tensor |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output |
|
of T5 Text Encoder. |
|
image_meta_size (torch.Tensor): |
|
Conditional embedding indicate the image sizes |
|
style: torch.Tensor: |
|
Conditional embedding indicate the style |
|
image_rotary_emb (`torch.Tensor`): |
|
The image rotary embeddings to apply on query and key tensors during attention calculation. |
|
return_dict: bool |
|
Whether to return a dictionary. |
|
""" |
|
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): |
|
block_samples = controlnet( |
|
hidden_states=hidden_states, |
|
timestep=timestep, |
|
controlnet_cond=image, |
|
conditioning_scale=scale, |
|
encoder_hidden_states=encoder_hidden_states, |
|
text_embedding_mask=text_embedding_mask, |
|
encoder_hidden_states_t5=encoder_hidden_states_t5, |
|
text_embedding_mask_t5=text_embedding_mask_t5, |
|
image_meta_size=image_meta_size, |
|
style=style, |
|
image_rotary_emb=image_rotary_emb, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
if i == 0: |
|
control_block_samples = block_samples |
|
else: |
|
control_block_samples = [ |
|
control_block_sample + block_sample |
|
for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0]) |
|
] |
|
control_block_samples = (control_block_samples,) |
|
|
|
return control_block_samples |
|
|