|
import argparse |
|
from typing import Any, Dict |
|
|
|
import torch |
|
from safetensors.torch import load_file |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel |
|
|
|
|
|
def remove_keys_(key: str, state_dict: Dict[str, Any]): |
|
state_dict.pop(key) |
|
|
|
|
|
TOKENIZER_MAX_LENGTH = 128 |
|
|
|
TRANSFORMER_KEYS_RENAME_DICT = { |
|
"patchify_proj": "proj_in", |
|
"adaln_single": "time_embed", |
|
"q_norm": "norm_q", |
|
"k_norm": "norm_k", |
|
} |
|
|
|
TRANSFORMER_SPECIAL_KEYS_REMAP = {} |
|
|
|
VAE_KEYS_RENAME_DICT = { |
|
|
|
"up_blocks.0": "mid_block", |
|
"up_blocks.1": "up_blocks.0", |
|
"up_blocks.2": "up_blocks.1.upsamplers.0", |
|
"up_blocks.3": "up_blocks.1", |
|
"up_blocks.4": "up_blocks.2.conv_in", |
|
"up_blocks.5": "up_blocks.2.upsamplers.0", |
|
"up_blocks.6": "up_blocks.2", |
|
"up_blocks.7": "up_blocks.3.conv_in", |
|
"up_blocks.8": "up_blocks.3.upsamplers.0", |
|
"up_blocks.9": "up_blocks.3", |
|
|
|
"down_blocks.0": "down_blocks.0", |
|
"down_blocks.1": "down_blocks.0.downsamplers.0", |
|
"down_blocks.2": "down_blocks.0.conv_out", |
|
"down_blocks.3": "down_blocks.1", |
|
"down_blocks.4": "down_blocks.1.downsamplers.0", |
|
"down_blocks.5": "down_blocks.1.conv_out", |
|
"down_blocks.6": "down_blocks.2", |
|
"down_blocks.7": "down_blocks.2.downsamplers.0", |
|
"down_blocks.8": "down_blocks.3", |
|
"down_blocks.9": "mid_block", |
|
|
|
"conv_shortcut": "conv_shortcut.conv", |
|
"res_blocks": "resnets", |
|
"norm3.norm": "norm3", |
|
"per_channel_statistics.mean-of-means": "latents_mean", |
|
"per_channel_statistics.std-of-means": "latents_std", |
|
} |
|
|
|
VAE_SPECIAL_KEYS_REMAP = { |
|
"per_channel_statistics.channel": remove_keys_, |
|
"per_channel_statistics.mean-of-means": remove_keys_, |
|
"per_channel_statistics.mean-of-stds": remove_keys_, |
|
} |
|
|
|
|
|
def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]: |
|
state_dict = saved_dict |
|
if "model" in saved_dict.keys(): |
|
state_dict = state_dict["model"] |
|
if "module" in saved_dict.keys(): |
|
state_dict = state_dict["module"] |
|
if "state_dict" in saved_dict.keys(): |
|
state_dict = state_dict["state_dict"] |
|
return state_dict |
|
|
|
|
|
def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]: |
|
state_dict[new_key] = state_dict.pop(old_key) |
|
|
|
|
|
def convert_transformer( |
|
ckpt_path: str, |
|
dtype: torch.dtype, |
|
): |
|
PREFIX_KEY = "" |
|
|
|
original_state_dict = get_state_dict(load_file(ckpt_path)) |
|
transformer = LTXVideoTransformer3DModel().to(dtype=dtype) |
|
|
|
for key in list(original_state_dict.keys()): |
|
new_key = key[len(PREFIX_KEY) :] |
|
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items(): |
|
new_key = new_key.replace(replace_key, rename_key) |
|
update_state_dict_inplace(original_state_dict, key, new_key) |
|
|
|
for key in list(original_state_dict.keys()): |
|
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items(): |
|
if special_key not in key: |
|
continue |
|
handler_fn_inplace(key, original_state_dict) |
|
|
|
transformer.load_state_dict(original_state_dict, strict=True) |
|
return transformer |
|
|
|
|
|
def convert_vae(ckpt_path: str, dtype: torch.dtype): |
|
original_state_dict = get_state_dict(load_file(ckpt_path)) |
|
vae = AutoencoderKLLTXVideo().to(dtype=dtype) |
|
|
|
for key in list(original_state_dict.keys()): |
|
new_key = key[:] |
|
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items(): |
|
new_key = new_key.replace(replace_key, rename_key) |
|
update_state_dict_inplace(original_state_dict, key, new_key) |
|
|
|
for key in list(original_state_dict.keys()): |
|
for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items(): |
|
if special_key not in key: |
|
continue |
|
handler_fn_inplace(key, original_state_dict) |
|
|
|
vae.load_state_dict(original_state_dict, strict=True) |
|
return vae |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint" |
|
) |
|
parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint") |
|
parser.add_argument( |
|
"--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory" |
|
) |
|
parser.add_argument( |
|
"--typecast_text_encoder", |
|
action="store_true", |
|
default=False, |
|
help="Whether or not to apply fp16/bf16 precision to text_encoder", |
|
) |
|
parser.add_argument("--save_pipeline", action="store_true") |
|
parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved") |
|
parser.add_argument("--dtype", default="fp32", help="Torch dtype to save the model in.") |
|
return parser.parse_args() |
|
|
|
|
|
DTYPE_MAPPING = { |
|
"fp32": torch.float32, |
|
"fp16": torch.float16, |
|
"bf16": torch.bfloat16, |
|
} |
|
|
|
VARIANT_MAPPING = { |
|
"fp32": None, |
|
"fp16": "fp16", |
|
"bf16": "bf16", |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
args = get_args() |
|
|
|
transformer = None |
|
dtype = DTYPE_MAPPING[args.dtype] |
|
variant = VARIANT_MAPPING[args.dtype] |
|
|
|
if args.save_pipeline: |
|
assert args.transformer_ckpt_path is not None and args.vae_ckpt_path is not None |
|
|
|
if args.transformer_ckpt_path is not None: |
|
transformer: LTXVideoTransformer3DModel = convert_transformer(args.transformer_ckpt_path, dtype) |
|
if not args.save_pipeline: |
|
transformer.save_pretrained( |
|
args.output_path, safe_serialization=True, max_shard_size="5GB", variant=variant |
|
) |
|
|
|
if args.vae_ckpt_path is not None: |
|
vae: AutoencoderKLLTXVideo = convert_vae(args.vae_ckpt_path, dtype) |
|
if not args.save_pipeline: |
|
vae.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", variant=variant) |
|
|
|
if args.save_pipeline: |
|
text_encoder_id = "google/t5-v1_1-xxl" |
|
tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH) |
|
text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir) |
|
|
|
if args.typecast_text_encoder: |
|
text_encoder = text_encoder.to(dtype=dtype) |
|
|
|
|
|
for param in text_encoder.parameters(): |
|
param.data = param.data.contiguous() |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler( |
|
use_dynamic_shifting=True, |
|
base_shift=0.95, |
|
max_shift=2.05, |
|
base_image_seq_len=1024, |
|
max_image_seq_len=4096, |
|
shift_terminal=0.1, |
|
) |
|
|
|
pipe = LTXPipeline( |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
transformer=transformer, |
|
) |
|
|
|
pipe.save_pretrained(args.output_path, safe_serialization=True, variant=variant, max_shard_size="5GB") |
|
|