File size: 34,625 Bytes
4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 c6de8f2 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 c0dbb78 02a9751 e70b610 93ec96b ebe241c e70b610 dfb9c8a 02a9751 c5daa2d 02a9751 93ec96b 02a9751 4157d39 93ec96b 52a094c 4157d39 02a9751 c5daa2d b67d0e7 02a9751 ebe241c 02a9751 2235e11 4157d39 c0dbb78 4157d39 c0dbb78 adbf5da c0dbb78 adbf5da c5daa2d 4157d39 c5daa2d adbf5da c5daa2d 4157d39 fd1d806 2235e11 ebe241c 02a9751 bbdd4d9 02a9751 52a094c 2235e11 02a9751 1576cad 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 697dd0c 4157d39 ebe241c 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 ebe241c 4157d39 0d6adf0 02a9751 52a094c 02a9751 52a094c 02a9751 ebe241c 02a9751 4157d39 02a9751 ebe241c 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 ebe241c 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 ebe241c 02a9751 ebe241c 02a9751 4157d39 02a9751 4157d39 ebe241c 4157d39 02a9751 2235e11 4157d39 02a9751 4157d39 30d56f8 0182054 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 da7a94c 4157d39 02a9751 4157d39 30d56f8 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 4157d39 02a9751 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
# The kiss3d pipeline wrapper for inference
import os
import spaces
import numpy as np
import random
import torch
import yaml
import uuid
from typing import Union, Any, Dict
from einops import rearrange
from PIL import Image
from pipeline.utils import logger, TMP_DIR, OUT_DIR
from pipeline.utils import lrm_reconstruct, isomer_reconstruct, preprocess_input_image
import torch
import torchvision
from torch.nn import functional as F
# for reconstruction model
from omegaconf import OmegaConf
from models.lrm.utils.train_util import instantiate_from_config
from models.lrm.utils.render_utils import rotate_x, rotate_y
#
from utils.tool import get_background
# for florence2
from transformers import AutoProcessor, AutoModelForCausalLM, AutoTokenizer
from models.llm.llm import load_llm_model, get_llm_response
from pipeline.custom_pipelines import FluxPriorReduxPipeline, FluxControlNetImg2ImgPipeline, FluxImg2ImgPipeline
from diffusers import FluxPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler, FluxTransformer2DModel, AutoencoderTiny
from diffusers.models.controlnets.controlnet_flux import FluxMultiControlNetModel, FluxControlNetModel
from diffusers.schedulers import FlowMatchHeunDiscreteScheduler
from huggingface_hub import hf_hub_download
access_token = os.getenv("HUGGINGFACE_TOKEN")
def convert_flux_pipeline(exist_flux_pipe, target_pipe, **kwargs):
new_pipe = target_pipe(
scheduler = exist_flux_pipe.scheduler,
vae = exist_flux_pipe.vae,
text_encoder = exist_flux_pipe.text_encoder,
tokenizer = exist_flux_pipe.tokenizer,
text_encoder_2 = exist_flux_pipe.text_encoder_2,
tokenizer_2 = exist_flux_pipe.tokenizer_2,
transformer = exist_flux_pipe.transformer,
**kwargs
)
return new_pipe
def init_wrapper_from_config(config_path):
with open(config_path, 'r') as config_file:
config_ = yaml.load(config_file, yaml.FullLoader)
dtype_ = {
'fp8': torch.float8_e4m3fn,
'bf16': torch.bfloat16,
'fp16': torch.float16,
'fp32': torch.float32
}
# init flux_pipeline
logger.info('==> Loading Flux model ...')
flux_device = config_['flux'].get('device', 'cpu')
flux_base_model_pth = config_['flux'].get('base_model', None)
flux_dtype = config_['flux'].get('dtype', 'bf16')
flux_controlnet_pth = config_['flux'].get('controlnet', None)
# flux_lora_pth = config_['flux'].get('lora', None)
flux_lora_pth = hf_hub_download(repo_id="LTT/Kiss3DGen", filename="rgb_normal.safetensors", repo_type="model", token=access_token)
flux_redux_pth = config_['flux'].get('redux', None)
# taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype_[flux_dtype]).to(flux_device)
if flux_base_model_pth.endswith('safetensors'):
flux_pipe = FluxImg2ImgPipeline.from_single_file(flux_base_model_pth, torch_dtype=dtype_[flux_dtype], token=access_token)
else:
flux_pipe = FluxImg2ImgPipeline.from_pretrained(flux_base_model_pth, torch_dtype=dtype_[flux_dtype], token=access_token)
flux_pipe.vae.enable_slicing()
flux_pipe.vae.enable_tiling()
# load flux model and controlnet
if flux_controlnet_pth is not None and False:
flux_controlnet = FluxControlNetModel.from_pretrained(flux_controlnet_pth, torch_dtype=torch.bfloat16)
flux_pipe = convert_flux_pipeline(flux_pipe, FluxControlNetImg2ImgPipeline, controlnet=[flux_controlnet])
flux_pipe.scheduler = FlowMatchHeunDiscreteScheduler.from_config(flux_pipe.scheduler.config)
# load lora weights
flux_pipe.load_lora_weights(flux_lora_pth)
# flux_pipe.to(device=flux_device)
# load redux model
flux_redux_pipe = None
if flux_redux_pth is not None and False:
flux_redux_pipe = FluxPriorReduxPipeline.from_pretrained(flux_redux_pth, torch_dtype=torch.bfloat16, token=access_token)
flux_redux_pipe.text_encoder = flux_pipe.text_encoder
flux_redux_pipe.text_encoder_2 = flux_pipe.text_encoder_2
flux_redux_pipe.tokenizer = flux_pipe.tokenizer
flux_redux_pipe.tokenizer_2 = flux_pipe.tokenizer_2
# flux_redux_pipe.to(device=flux_device)
# logger.warning(f"GPU memory allocated after load flux model on {flux_device}: {torch.cuda.memory_allocated(device=flux_device) / 1024**3} GB")
# init multiview model
logger.info('==> Loading multiview diffusion model ...')
multiview_device = config_['multiview'].get('device', 'cpu')
multiview_pipeline = DiffusionPipeline.from_pretrained(
config_['multiview']['base_model'],
custom_pipeline=config_['multiview']['custom_pipeline'],
torch_dtype=torch.float16,
)
multiview_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
multiview_pipeline.scheduler.config, timestep_spacing='trailing'
)
unet_ckpt_path = hf_hub_download(repo_id="LTT/Kiss3DGen", filename="flexgen.ckpt", repo_type="model", token=access_token)
if unet_ckpt_path is not None:
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
multiview_pipeline.unet.load_state_dict(state_dict, strict=True)
multiview_pipeline.to(multiview_device)
# logger.warning(f"GPU memory allocated after load multiview model on {multiview_device}: {torch.cuda.memory_allocated(device=multiview_device) / 1024**3} GB")
multiview_pipeline = None
# load caption model
# logger.info('==> Loading caption model ...')
# caption_device = config_['caption'].get('device', 'cpu')
# caption_model = AutoModelForCausalLM.from_pretrained(config_['caption']['base_model'], \
# torch_dtype=torch.bfloat16, trust_remote_code=True)
# caption_processor = AutoProcessor.from_pretrained(config_['caption']['base_model'], trust_remote_code=True)
# logger.warning(f"GPU memory allocated after load caption model on {caption_device}: {torch.cuda.memory_allocated(device=caption_device) / 1024**3} GB")
caption_processor = None
caption_model = None
# load reconstruction model
logger.info('==> Loading reconstruction model ...')
recon_device = config_['reconstruction'].get('device', 'cpu')
recon_model_config = OmegaConf.load(config_['reconstruction']['model_config'])
recon_model = instantiate_from_config(recon_model_config.model_config)
# load recon model checkpoint
model_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="final_ckpt.ckpt", repo_type="model")
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
recon_model.load_state_dict(state_dict, strict=True)
recon_model.to(recon_device)
recon_model.eval()
# logger.warning(f"GPU memory allocated after load reconstruction model on {recon_device}: {torch.cuda.memory_allocated(device=recon_device) / 1024**3} GB")
# load llm
llm_configs = config_.get('llm', None)
if llm_configs is not None:
logger.info('==> Loading LLM ...')
llm_device = llm_configs.get('device', 'cpu')
llm, llm_tokenizer = load_llm_model(llm_configs['base_model'])
# llm.to(llm_device)
# logger.warning(f"GPU memory allocated after load llm model on {llm_device}: {torch.cuda.memory_allocated(device=llm_device) / 1024**3} GB")
else:
llm, llm_tokenizer = None, None
torch.cuda.empty_cache()
return kiss3d_wrapper(
config = config_,
flux_pipeline = flux_pipe,
flux_redux_pipeline=flux_redux_pipe,
multiview_pipeline = multiview_pipeline,
caption_processor = caption_processor,
caption_model = caption_model,
reconstruction_model_config = recon_model_config,
reconstruction_model = recon_model,
llm_model = llm,
llm_tokenizer = llm_tokenizer
)
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
print(f"Random seed set to {seed}")
class kiss3d_wrapper(object):
def __init__(self,
config: Dict,
flux_pipeline: Union[FluxPipeline, FluxControlNetImg2ImgPipeline],
flux_redux_pipeline: FluxPriorReduxPipeline,
multiview_pipeline: DiffusionPipeline,
caption_processor: AutoProcessor,
caption_model: AutoModelForCausalLM,
reconstruction_model_config: Any,
reconstruction_model: Any,
llm_model: AutoModelForCausalLM = None,
llm_tokenizer: AutoTokenizer = None
):
self.config = config
self.flux_pipeline = flux_pipeline
self.flux_redux_pipeline = flux_redux_pipeline
self.multiview_pipeline = multiview_pipeline
self.caption_model = caption_model
self.caption_processor = caption_processor
self.recon_model_config = reconstruction_model_config
self.recon_model = reconstruction_model
self.llm_model = llm_model
self.llm_tokenizer = llm_tokenizer
self.to_512_tensor = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize((512, 512), interpolation=2),
])
self.renew_uuid()
def renew_uuid(self):
self.uuid = uuid.uuid4()
def context(self):
if self.config['use_zero_gpu']:
# import spaces
# return spaces.GPU()
pass
else:
return torch.no_grad()
def get_image_caption(self, image):
"""
image: PIL image or path of PIL image
"""
torch_dtype = torch.bfloat16
caption_device = self.config['caption'].get('device', 'cpu')
self.caption_model.to(caption_device)
if isinstance(image, str): # If image is a file path
image = preprocess_input_image(Image.open(image))
elif not isinstance(image, Image.Image):
raise NotImplementedError('unexpected image type')
prompt = "<MORE_DETAILED_CAPTION>"
inputs = self.caption_processor(text=prompt, images=image, return_tensors="pt").to(caption_device, torch_dtype)
generated_ids = self.caption_model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
generated_text = self.caption_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = self.caption_processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
caption_text = parsed_answer["<MORE_DETAILED_CAPTION>"] # .replace("The image is ", "")
logger.info(f"Auto caption result: \"{caption_text}\"")
caption_text = self.get_detailed_prompt(caption_text)
self.caption_model.to('cpu')
return caption_text
# @spaces.GPU
def get_detailed_prompt(self, prompt, seed=None):
self.llm_model.to(self.config['llm']['device'])
if self.llm_model is not None:
detailed_prompt = get_llm_response(self.llm_model, self.llm_tokenizer, prompt, seed=seed)
logger.info(f"LLM refined prompt result: \"{detailed_prompt}\"")
return detailed_prompt
self.llm_model.to('cpu')
torch.cuda.empty_cache()
return prompt
def del_llm_model(self):
logger.warning('This function is now deprecated and will take no effect')
# raise NotImplementedError()
# del llm.model
# del llm.tokenizer
# llm.model = None
# llm.tokenizer = None
def generate_multiview(self, image, seed=None, num_inference_steps=None):
seed = seed or self.config['multiview'].get('seed', 0)
mv_device = self.config['multiview'].get('device', 'cpu')
self.multiview_pipeline.to(mv_device)
generator = torch.Generator(device=mv_device).manual_seed(seed)
with self.context():
mv_image = self.multiview_pipeline(image,
num_inference_steps=num_inference_steps or self.config['multiview']['num_inference_steps'],
width=512*2,
height=512*2,
generator=generator).images[0]
self.multiview_pipeline.to('cpu')
return mv_image
def reconstruct_from_multiview(self, mv_image, lrm_render_radius=4.15):
"""
mv_image: PIL.Image
"""
recon_device = self.config['reconstruction'].get('device', 'cpu')
rgb_multi_view = np.asarray(mv_image, dtype=np.float32) / 255.0
rgb_multi_view = torch.from_numpy(rgb_multi_view).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
rgb_multi_view = rearrange(rgb_multi_view, 'c (n h) (m w) -> (n m) c h w', n=2, m=2).unsqueeze(0).to(recon_device)
with self.context():
vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
lrm_reconstruct(self.recon_model, self.recon_model_config.infer_config,
rgb_multi_view, name=self.uuid, render_radius=lrm_render_radius)
return rgb_multi_view, vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo
def generate_reference_3D_bundle_image_zero123(self, image, use_mv_rgb=False, save_intermediate_results=True):
"""
input: image, PIL.Image
return: ref_3D_bundle_image, Tensor of shape (3, 1024, 2048)
"""
mv_image = self.generate_multiview(image)
if save_intermediate_results:
mv_image.save(os.path.join(TMP_DIR, f'{self.uuid}_mv_image.png'))
rgb_multi_view, vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = self.reconstruct_from_multiview(mv_image)
if use_mv_rgb:
# ref_3D_bundle_image = torchvision.utils.make_grid(torch.cat([rgb_multi_view[0, [3, 0, 1, 2], ...].cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0) # range [0, 1]
rgb_ = torch.cat([rgb_multi_view[0, [3, 0, 1, 2], ...].cpu(), lrm_multi_view_rgb.cpu()], dim=0)
ref_3D_bundle_image = torchvision.utils.make_grid(torch.cat([rgb_[[0, 5, 2, 7], ...], (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0) # range [0, 1]
else:
ref_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0) # range [0, 1]
ref_3D_bundle_image = ref_3D_bundle_image.clip(0., 1.)
if save_intermediate_results:
save_path = os.path.join(TMP_DIR, f'{self.uuid}_ref_3d_bundle_image.png')
torchvision.utils.save_image(ref_3D_bundle_image, save_path)
logger.info(f"Save reference 3D bundle image to {save_path}")
return ref_3D_bundle_image, save_path
return ref_3D_bundle_image
def generate_3d_bundle_image_controlnet(self,
prompt,
image=None,
strength=1.0,
control_image=[],
control_mode=[],
control_guidance_start=None,
control_guidance_end=None,
controlnet_conditioning_scale=None,
lora_scale=1.0,
num_inference_steps=None,
seed=None,
redux_hparam=None,
save_intermediate_results=True,
**kwargs):
control_mode_dict = {
'canny': 0,
'tile': 1,
'depth': 2,
'blur': 3,
'pose': 4,
'gray': 5,
'lq': 6,
} # for https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union only
flux_device = self.config['flux'].get('device', 'cpu')
self.flux_pipeline.to(flux_device)
seed = seed or self.config['flux'].get('seed', 0)
num_inference_steps = num_inference_steps or self.config['flux'].get('num_inference_steps', 20)
generator = torch.Generator(device=flux_device).manual_seed(seed)
if image is None:
image = torch.zeros((1, 3, 1024, 2048), dtype=torch.float32, device=flux_device)
hparam_dict = {
'prompt': 'A grid of 2x4 multi-view image, elevation 5. White background.',
'prompt_2': ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', prompt]),
'image': image,
'strength': strength,
'num_inference_steps': num_inference_steps,
'guidance_scale': 3.5,
'num_images_per_prompt': 1,
'width': 2048,
'height': 1024,
'output_type': 'np',
'generator': generator,
'joint_attention_kwargs': {"scale": lora_scale}
}
hparam_dict.update(kwargs)
# do redux
if redux_hparam is not None:
self.flux_redux_pipeline.to(flux_device)
assert self.flux_redux_pipeline is not None
assert 'image' in redux_hparam.keys()
redux_hparam_ = {
'prompt': hparam_dict.pop('prompt'),
'prompt_2': hparam_dict.pop('prompt_2'),
}
redux_hparam_.update(redux_hparam)
with self.context():
redux_output = self.flux_redux_pipeline(**redux_hparam_)
hparam_dict.update(redux_output)
self.flux_redux_pipeline.to('cpu')
# append controlnet hparams
if len(control_image) > 0:
assert isinstance(self.flux_pipeline, FluxControlNetImg2ImgPipeline)
assert len(control_mode) == len(control_image) # the count of image should be the same as control mode
flux_ctrl_net = self.flux_pipeline.controlnet.nets[0]
self.flux_pipeline.controlnet = FluxMultiControlNetModel([flux_ctrl_net for _ in control_mode])
ctrl_hparams = {
'control_mode': [control_mode_dict[mode_] for mode_ in control_mode],
'control_image': control_image,
'control_guidance_start': control_guidance_start or [0.0 for i in range(len(control_image))],
'control_guidance_end': control_guidance_end or [1.0 for i in range(len(control_image))],
'controlnet_conditioning_scale': controlnet_conditioning_scale or [1.0 for i in range(len(control_image))],
}
hparam_dict.update(ctrl_hparams)
with self.context():
gen_3d_bundle_image = self.flux_pipeline(**hparam_dict).images
gen_3d_bundle_image_ = torch.from_numpy(gen_3d_bundle_image).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
if save_intermediate_results:
save_path = os.path.join(TMP_DIR, f'{self.uuid}_gen_3d_bundle_image.png')
torchvision.utils.save_image(gen_3d_bundle_image_, save_path)
logger.info(f"Save generated 3D bundle image to {save_path}")
return gen_3d_bundle_image_, save_path
self.flux_pipeline.to('cpu')
return gen_3d_bundle_image_
def preprocess_controlnet_cond_image(self, image, control_mode, save_intermediate_results=True, **kwargs):
"""
image: Tensor of shape (c, h, w), range [0., 1.]
"""
if control_mode in ['tile', 'lq']:
_, h, w = image.shape
down_scale = kwargs.get('down_scale', 4)
down_up = torchvision.transforms.Compose([
torchvision.transforms.Resize((h // down_scale, w // down_scale), interpolation=2), # 1 for lanczos and 2 for bilinear
torchvision.transforms.Resize((h, w), interpolation=2),
torchvision.transforms.ToPILImage()
])
preprocessed = down_up(image)
elif control_mode == 'blur':
kernel_size = kwargs.get('kernel_size', 51)
sigma = kwargs.get('sigma', 2.0)
blur = torchvision.transforms.Compose([
torchvision.transforms.ToPILImage(),
torchvision.transforms.GaussianBlur(kernel_size, sigma),
])
preprocessed = blur(image)
else:
raise NotImplementedError(f'Unexpected control mode {control_mode}')
if save_intermediate_results:
save_path = os.path.join(TMP_DIR, f'{self.uuid}_{control_mode}_controlnet_cond.png')
preprocessed.save(save_path)
logger.info(f'Save image to {save_path}')
return preprocessed
def generate_3d_bundle_image_text(self,
prompt,
image=None,
strength=1.0,
lora_scale=1.0,
num_inference_steps=None,
seed=None,
redux_hparam=None,
save_intermediate_results=True,
**kwargs):
"""
return: gen_3d_bundle_image, torch.Tensor of shape (3, 1024, 2048), range [0., 1.]
"""
self.flux_pipeline.to(self.config['flux'].get('device', 'cpu'))
print(f"==> generate_3d_bundle_image_text: {prompt}")
if isinstance(self.flux_pipeline, FluxImg2ImgPipeline):
flux_pipeline = self.flux_pipeline
else:
flux_pipeline = convert_flux_pipeline(self.flux_pipeline, FluxImg2ImgPipeline)
flux_device = self.config['flux'].get('device', 'cpu')
seed = seed or self.config['flux'].get('seed', 0)
num_inference_steps = num_inference_steps or self.config['flux'].get('num_inference_steps', 20)
if image is None:
image = torch.zeros((1, 3, 1024, 2048), dtype=torch.float32, device=flux_device)
generator = torch.Generator(device=flux_device).manual_seed(seed)
hparam_dict = {
'prompt': 'A grid of 2x4 multi-view image, elevation 5. White background.',
'prompt_2': ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', prompt]),
'image': image,
'strength': strength,
'num_inference_steps': num_inference_steps,
'guidance_scale': 3.5,
'num_images_per_prompt': 1,
'width': 2048,
'height': 1024,
'output_type': 'np',
'generator': generator,
'joint_attention_kwargs': {"scale": lora_scale}
}
hparam_dict.update(kwargs)
# do redux
if redux_hparam is not None:
assert self.flux_redux_pipeline is not None
assert 'image' in redux_hparam.keys()
redux_hparam_ = {
'prompt': hparam_dict.pop('prompt'),
'prompt_2': hparam_dict.pop('prompt_2'),
}
redux_hparam_.update(redux_hparam)
with self.context():
redux_output = self.flux_redux_pipeline(**redux_hparam_)
hparam_dict.update(redux_output)
with self.context():
gen_3d_bundle_image = flux_pipeline(**hparam_dict).images
gen_3d_bundle_image_ = torch.from_numpy(gen_3d_bundle_image).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
if save_intermediate_results:
save_path = os.path.join(TMP_DIR, f'{self.uuid}_gen_3d_bundle_image.png')
torchvision.utils.save_image(gen_3d_bundle_image_, save_path)
logger.info(f"Save generated 3D bundle image to {save_path}")
return gen_3d_bundle_image_, save_path
self.flux_pipeline.to('cpu')
return gen_3d_bundle_image_
def reconstruct_3d_bundle_image(self,
image,
lrm_render_radius=4.15,
isomer_radius=4.5,
reconstruction_stage1_steps=0,
reconstruction_stage2_steps=20,
save_intermediate_results=True):
"""
image: torch.Tensor, range [0., 1.], (3, 1024, 2048)
"""
recon_device = self.config['reconstruction'].get('device', 'cpu')
# split rgb and normal
images = rearrange(image, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) # (3, 1024, 2048) -> (8, 3, 512, 512)
rgb_multi_view, normal_multi_view = images.chunk(2, dim=0)
multi_view_mask = get_background(normal_multi_view).to(recon_device)
print(f'shape images: {images.shape}')
# breakpoint()
rgb_multi_view = rgb_multi_view.to(recon_device) * multi_view_mask + (1 - multi_view_mask)
with self.context():
vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
lrm_reconstruct(self.recon_model, self.recon_model_config.infer_config,
rgb_multi_view.unsqueeze(0).to(recon_device), name=self.uuid,
input_camera_type='kiss3d', render_3d_bundle_image=save_intermediate_results,
render_azimuths=[0, 90, 180, 270],
render_radius=lrm_render_radius)
if save_intermediate_results:
recon_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
torchvision.utils.save_image(recon_3D_bundle_image, os.path.join(TMP_DIR, f'{self.uuid}_lrm_recon_3d_bundle_image.png'))
recon_mesh_path = os.path.join(TMP_DIR, f"{self.uuid}_isomer_recon_mesh.obj")
return isomer_reconstruct(rgb_multi_view=rgb_multi_view,
normal_multi_view=normal_multi_view,
multi_view_mask=multi_view_mask,
vertices=vertices,
faces=faces,
save_path=recon_mesh_path,
radius=isomer_radius,
reconstruction_stage1_steps=int(reconstruction_stage1_steps),
reconstruction_stage2_steps=int(reconstruction_stage2_steps)
)
def run_text_to_3d(k3d_wrapper,
prompt,
init_image_path=None):
# ======================================= Example of text to 3D generation ======================================
# Renew The uuid
k3d_wrapper.renew_uuid()
# FOR Text to 3D (also for image to image) with init image
init_image = None
if init_image_path is not None:
init_image = Image.open(init_image_path)
# refine prompt
logger.info(f"Input prompt: \"{prompt}\"")
prompt = k3d_wrapper.get_detailed_prompt(prompt)
gen_3d_bundle_image, gen_save_path = k3d_wrapper.generate_3d_bundle_image_text(prompt,
image=init_image,
strength=1.0,
save_intermediate_results=True)
# recon from 3D Bundle image
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, save_intermediate_results=False)
return gen_save_path, recon_mesh_path
def image2mesh_preprocess(k3d_wrapper, input_image_, seed, use_mv_rgb=True):
seed_everything(seed)
# Renew The uuid
k3d_wrapper.renew_uuid()
# FOR IMAGE TO 3D: generate reference 3D bundle image from a single input image
input_image__ = Image.open(input_image_) if isinstance(input_image_, str) else input_image_
input_image = preprocess_input_image(input_image__)
input_image_save_path = os.path.join(TMP_DIR, f'{k3d_wrapper.uuid}_input_image.png')
input_image.save(input_image_save_path)
reference_3d_bundle_image, reference_save_path = k3d_wrapper.generate_reference_3D_bundle_image_zero123(input_image, use_mv_rgb=use_mv_rgb)
caption = k3d_wrapper.get_image_caption(input_image)
return input_image_save_path, reference_save_path, caption
def image2mesh_main(k3d_wrapper, input_image, reference_3d_bundle_image, caption, seed, strength1=0.5, strength2=0.95, enable_redux=True, use_controlnet=True):
seed_everything(seed)
if enable_redux:
redux_hparam = {
'image': k3d_wrapper.to_512_tensor(input_image).unsqueeze(0).clip(0., 1.),
'prompt_embeds_scale': 1.0,
'pooled_prompt_embeds_scale': 1.0,
'strength': strength1
}
else:
redux_hparam = None
if use_controlnet:
# prepare controlnet condition
control_mode = ['tile']
control_image = [k3d_wrapper.preprocess_controlnet_cond_image(reference_3d_bundle_image, mode_, down_scale=1, kernel_size=51, sigma=2.0) for mode_ in control_mode]
control_guidance_start = [0.0]
control_guidance_end = [0.3]
controlnet_conditioning_scale = [0.3]
gen_3d_bundle_image, gen_save_path = k3d_wrapper.generate_3d_bundle_image_controlnet(
prompt=caption,
image=reference_3d_bundle_image.unsqueeze(0),
strength=strength2,
control_image=control_image,
control_mode=control_mode,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end,
controlnet_conditioning_scale=controlnet_conditioning_scale,
lora_scale=1.0,
redux_hparam=redux_hparam
)
else:
gen_3d_bundle_image, gen_save_path = k3d_wrapper.generate_3d_bundle_image_text(
prompt=caption,
image=reference_3d_bundle_image.unsqueeze(0),
strength=strength2,
lora_scale=1.0,
redux_hparam=redux_hparam
)
# recon from 3D Bundle image
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, save_intermediate_results=False)
return gen_save_path, recon_mesh_path
def run_image_to_3d(k3d_wrapper, input_image_path, enable_redux=True, use_mv_rgb=True, use_controlnet=True):
# ======================================= Example of image to 3D generation ======================================
# Renew The uuid
k3d_wrapper.renew_uuid()
# FOR IMAGE TO 3D: generate reference 3D bundle image from a single input image
input_image = preprocess_input_image(Image.open(input_image_path))
input_image.save(os.path.join(TMP_DIR, f'{k3d_wrapper.uuid}_input_image.png'))
reference_3d_bundle_image, reference_save_path = k3d_wrapper.generate_reference_3D_bundle_image_zero123(input_image, use_mv_rgb=use_mv_rgb)
caption = k3d_wrapper.get_image_caption(input_image)
if enable_redux:
redux_hparam = {
'image': k3d_wrapper.to_512_tensor(input_image).unsqueeze(0).clip(0., 1.),
'prompt_embeds_scale': 1.0,
'pooled_prompt_embeds_scale': 1.0,
'strength': 0.5
}
else:
redux_hparam = None
if use_controlnet:
# prepare controlnet condition
control_mode = ['tile']
control_image = [k3d_wrapper.preprocess_controlnet_cond_image(reference_3d_bundle_image, mode_, down_scale=1, kernel_size=51, sigma=2.0) for mode_ in control_mode]
control_guidance_start = [0.0]
control_guidance_end = [0.3]
controlnet_conditioning_scale = [0.3]
gen_3d_bundle_image, gen_save_path = k3d_wrapper.generate_3d_bundle_image_controlnet(
prompt=caption,
image=reference_3d_bundle_image.unsqueeze(0),
strength=.95,
control_image=control_image,
control_mode=control_mode,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end,
controlnet_conditioning_scale=controlnet_conditioning_scale,
lora_scale=1.0,
redux_hparam=redux_hparam
)
else:
gen_3d_bundle_image, gen_save_path = k3d_wrapper.generate_3d_bundle_image_text(
prompt=caption,
image=reference_3d_bundle_image.unsqueeze(0),
strength=.95,
lora_scale=1.0,
redux_hparam=redux_hparam
)
# recon from 3D Bundle image
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, save_intermediate_results=False)
return gen_save_path, recon_mesh_path
if __name__ == "__main__":
k3d_wrapper = init_wrapper_from_config('/hpc2hdd/home/jlin695/code/github/Kiss3DGen/pipeline/pipeline_config/default.yaml')
os.system(f'rm -rf {TMP_DIR}/*')
# os.system(f'rm -rf {OUT_DIR}/3d_bundle/*')
enable_redux = True
use_mv_rgb = True
use_controlnet = True
img_folder = '/hpc2hdd/home/jlin695/code/Kiss3DGen/examples'
for img_ in os.listdir(img_folder):
name, _ = os.path.splitext(img_)
print("Now processing:", name)
gen_save_path, recon_mesh_path = run_image_to_3d(k3d_wrapper, os.path.join(img_folder, img_), enable_redux, use_mv_rgb, use_controlnet)
os.system(f'cp -f {gen_save_path} {OUT_DIR}/3d_bundle/{name}_3d_bundle.png')
os.system(f'cp -f {recon_mesh_path} {OUT_DIR}/3d_bundle/{name}.obj')
# TODO exams:
# 1. redux True, mv_rgb False, Tile, down_scale = 1
# 2. redux False, mv_rgb True, Tile, down_scale = 8
# 3. redux False, mv_rgb False, Tile, blur = 10
# run_text_to_3d(k3d_wrapper, prompt='A doll of a girl in Harry Potter')
# Example of loading existing 3D bundle Image as Tensor from path
# pseudo_image = Image.open('/hpc2hdd/home/jlin695/code/github/Kiss3DGen/outputs/tmp/fbf6edad-2d7f-49e5-8ac2-a05af5fe695b_ref_3d_bundle_image.png')
# gen_3d_bundle_image = torchvision.transforms.functional.to_tensor(pseudo_image) |