File size: 22,271 Bytes
02a9751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# copied from diffusers/src/diffusers/pipelines/flux/pipeline_flux_prior_redux.py

# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import List, Optional, Union

import torch
from PIL import Image
from transformers import (
    CLIPTextModel,
    CLIPTokenizer,
    SiglipImageProcessor,
    SiglipVisionModel,
    T5EncoderModel,
    T5TokenizerFast,
)

from diffusers.image_processor import PipelineImageInput
from diffusers.loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.flux.modeling_flux import ReduxImageEncoder
from diffusers.pipelines.flux.pipeline_output import FluxPriorReduxPipelineOutput


if is_torch_xla_available():
    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import FluxPriorReduxPipeline, FluxPipeline
        >>> from diffusers.utils import load_image

        >>> device = "cuda"
        >>> dtype = torch.bfloat16

        >>> repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
        >>> repo_base = "black-forest-labs/FLUX.1-dev"
        >>> pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
        >>> pipe = FluxPipeline.from_pretrained(
        ...     repo_base, text_encoder=None, text_encoder_2=None, torch_dtype=torch.bfloat16
        ... ).to(device)

        >>> image = load_image(
        ...     "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png"
        ... )
        >>> pipe_prior_output = pipe_prior_redux(image)
        >>> images = pipe(
        ...     guidance_scale=2.5,
        ...     num_inference_steps=50,
        ...     generator=torch.Generator("cpu").manual_seed(0),
        ...     **pipe_prior_output,
        ... ).images
        >>> images[0].save("flux-redux.png")
        ```
"""


class FluxPriorReduxPipeline(DiffusionPipeline):
    r"""
    The Flux Redux pipeline for image-to-image generation.

    Reference: https://blackforestlabs.ai/flux-1-tools/

    Args:
        image_encoder ([`SiglipVisionModel`]):
            SIGLIP vision model to encode the input image.
        feature_extractor ([`SiglipImageProcessor`]):
            Image processor for preprocessing images for the SIGLIP model.
        image_embedder ([`ReduxImageEncoder`]):
            Redux image encoder to process the SIGLIP embeddings.
        text_encoder ([`CLIPTextModel`], *optional*):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([`T5EncoderModel`], *optional*):
            [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
            the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
        tokenizer (`CLIPTokenizer`, *optional*):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`T5TokenizerFast`, *optional*):
            Second Tokenizer of class
            [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
    """

    model_cpu_offload_seq = "image_encoder->image_embedder"
    _optional_components = [
        "text_encoder",
        "tokenizer",
        "text_encoder_2",
        "tokenizer_2",
    ]
    _callback_tensor_inputs = []

    def __init__(
        self,
        image_encoder: SiglipVisionModel,
        feature_extractor: SiglipImageProcessor,
        image_embedder: ReduxImageEncoder,
        text_encoder: CLIPTextModel = None,
        tokenizer: CLIPTokenizer = None,
        text_encoder_2: T5EncoderModel = None,
        tokenizer_2: T5TokenizerFast = None,
    ):
        super().__init__()

        self.register_modules(
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
            image_embedder=image_embedder,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_encoder_2=text_encoder_2,
            tokenizer_2=tokenizer_2,
        )
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )

    def check_inputs(
        self,
        image,
        prompt,
        prompt_2,
        prompt_embeds=None,
        pooled_prompt_embeds=None,
        prompt_embeds_scale=1.0,
        pooled_prompt_embeds_scale=1.0,
    ):
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
        if prompt is not None and (isinstance(prompt, list) and isinstance(image, list) and len(prompt) != len(image)):
            raise ValueError(
                f"number of prompts must be equal to number of images, but {len(prompt)} prompts were provided and {len(image)} images"
            )
        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )
        if isinstance(prompt_embeds_scale, list) and (
            isinstance(image, list) and len(prompt_embeds_scale) != len(image)
        ):
            raise ValueError(
                f"number of weights must be equal to number of images, but {len(prompt_embeds_scale)} weights were provided and {len(image)} images"
            )

    def encode_image(self, image, device, num_images_per_prompt):
        dtype = next(self.image_encoder.parameters()).dtype
        image = self.feature_extractor.preprocess(
            images=image, do_resize=True, return_tensors="pt", do_convert_rgb=True
        )
        image = image.to(device=device, dtype=dtype)

        image_enc_hidden_states = self.image_encoder(**image).last_hidden_state
        image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)

        return image_enc_hidden_states

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        num_images_per_prompt: int = 1,
        max_sequence_length: int = 512,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)

        text_inputs = self.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]

        dtype = self.text_encoder_2.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
    def _get_clip_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        device: Optional[torch.device] = None,
    ):
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_overflowing_tokens=False,
            return_length=False,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds.pooler_output
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        prompt_2: Union[str, List[str]],
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        max_sequence_length: int = 512,
        lora_scale: Optional[float] = None,
    ):
        r"""

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in all text-encoders
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder, lora_scale)
            if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # We only use the pooled prompt output from the CLIPTextModel
            pooled_prompt_embeds = self._get_clip_prompt_embeds(
                prompt=prompt,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
            )
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
            )

        if self.text_encoder is not None:
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
        text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)

        return prompt_embeds, pooled_prompt_embeds, text_ids

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        image: PipelineImageInput,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0,
        pooled_prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0,
        strength: Optional[Union[float, List[float]]] = 1.0,
        return_dict: bool = True,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
                `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
                numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
                or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
                list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. **experimental feature**: to use this feature,
                make sure to explicitly load text encoders to the pipeline. Prompts will be ignored if text encoders
                are not loaded.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.flux.FluxPriorReduxPipelineOutput`] instead of a plain tuple.

        Examples:

        Returns:
            [`~pipelines.flux.FluxPriorReduxPipelineOutput`] or `tuple`:
            [`~pipelines.flux.FluxPriorReduxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is a list with the generated images.
        """

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            image,
            prompt,
            prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            prompt_embeds_scale=prompt_embeds_scale,
            pooled_prompt_embeds_scale=pooled_prompt_embeds_scale,
        )

        # 2. Define call parameters
        if image is not None and isinstance(image, Image.Image):
            batch_size = 1
        elif image is not None and isinstance(image, list):
            batch_size = len(image)
        else:
            batch_size = image.shape[0]
        if prompt is not None and isinstance(prompt, str):
            prompt = batch_size * [prompt]
        if isinstance(prompt_embeds_scale, float):
            prompt_embeds_scale = batch_size * [prompt_embeds_scale]
        if isinstance(pooled_prompt_embeds_scale, float):
            pooled_prompt_embeds_scale = batch_size * [pooled_prompt_embeds_scale]
        if isinstance(strength, float):
            strength = batch_size * [strength]

        device = self._execution_device

        # 3. Prepare image embeddings
        image_latents = self.encode_image(image, device, 1)

        image_embeds = self.image_embedder(image_latents).image_embeds
        image_embeds = image_embeds.to(device=device)

        # 3. Prepare (dummy) text embeddings
        if hasattr(self, "text_encoder") and self.text_encoder is not None:
            (
                prompt_embeds,
                pooled_prompt_embeds,
                _,
            ) = self.encode_prompt(
                prompt=prompt,
                prompt_2=prompt_2,
                prompt_embeds=prompt_embeds,
                pooled_prompt_embeds=pooled_prompt_embeds,
                device=device,
                num_images_per_prompt=1,
                max_sequence_length=512,
                lora_scale=None,
            )
        else:
            if prompt is not None:
                logger.warning(
                    "prompt input is ignored when text encoders are not loaded to the pipeline. "
                    "Make sure to explicitly load the text encoders to enable prompt input. "
                )
            # max_sequence_length is 512, t5 encoder hidden size is 4096
            prompt_embeds = torch.zeros((batch_size, 512, 4096), device=device, dtype=image_embeds.dtype)
            # pooled_prompt_embeds is 768, clip text encoder hidden size
            pooled_prompt_embeds = torch.zeros((batch_size, 768), device=device, dtype=image_embeds.dtype)

        # apply strength to image_embeds
        image_embeds *= torch.tensor(strength, device=device, dtype=image_embeds.dtype)[:, None, None]

        # scale & concatenate image and text embeddings
        prompt_embeds = torch.cat([prompt_embeds, image_embeds], dim=1)

        prompt_embeds *= torch.tensor(prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[:, None, None]
        pooled_prompt_embeds *= torch.tensor(pooled_prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[
            :, None
        ]

        # weighted sum
        prompt_embeds = torch.sum(prompt_embeds, dim=0, keepdim=True)
        pooled_prompt_embeds = torch.sum(pooled_prompt_embeds, dim=0, keepdim=True)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (prompt_embeds, pooled_prompt_embeds)

        return FluxPriorReduxPipelineOutput(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds)