File size: 48,044 Bytes
df4a4de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 |
# Copyright 2024 The Mochi team and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..attention_processor import Attention, MochiVaeAttnProcessor2_0
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from .autoencoder_kl_cogvideox import CogVideoXCausalConv3d
from .vae import DecoderOutput, DiagonalGaussianDistribution
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class MochiChunkedGroupNorm3D(nn.Module):
r"""
Applies per-frame group normalization for 5D video inputs. It also supports memory-efficient chunked group
normalization.
Args:
num_channels (int): Number of channels expected in input
num_groups (int, optional): Number of groups to separate the channels into. Default: 32
affine (bool, optional): If True, this module has learnable affine parameters. Default: True
chunk_size (int, optional): Size of each chunk for processing. Default: 8
"""
def __init__(
self,
num_channels: int,
num_groups: int = 32,
affine: bool = True,
chunk_size: int = 8,
):
super().__init__()
self.norm_layer = nn.GroupNorm(num_channels=num_channels, num_groups=num_groups, affine=affine)
self.chunk_size = chunk_size
def forward(self, x: torch.Tensor = None) -> torch.Tensor:
batch_size = x.size(0)
x = x.permute(0, 2, 1, 3, 4).flatten(0, 1)
output = torch.cat([self.norm_layer(chunk) for chunk in x.split(self.chunk_size, dim=0)], dim=0)
output = output.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
return output
class MochiResnetBlock3D(nn.Module):
r"""
A 3D ResNet block used in the Mochi model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
non_linearity (`str`, defaults to `"swish"`):
Activation function to use.
"""
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
act_fn: str = "swish",
):
super().__init__()
out_channels = out_channels or in_channels
self.in_channels = in_channels
self.out_channels = out_channels
self.nonlinearity = get_activation(act_fn)
self.norm1 = MochiChunkedGroupNorm3D(num_channels=in_channels)
self.conv1 = CogVideoXCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, pad_mode="replicate"
)
self.norm2 = MochiChunkedGroupNorm3D(num_channels=out_channels)
self.conv2 = CogVideoXCausalConv3d(
in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, pad_mode="replicate"
)
def forward(
self,
inputs: torch.Tensor,
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.Tensor:
new_conv_cache = {}
conv_cache = conv_cache or {}
hidden_states = inputs
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1"))
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2"))
hidden_states = hidden_states + inputs
return hidden_states, new_conv_cache
class MochiDownBlock3D(nn.Module):
r"""
An downsampling block used in the Mochi model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
num_layers (`int`, defaults to `1`):
Number of resnet blocks in the block.
temporal_expansion (`int`, defaults to `2`):
Temporal expansion factor.
spatial_expansion (`int`, defaults to `2`):
Spatial expansion factor.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
num_layers: int = 1,
temporal_expansion: int = 2,
spatial_expansion: int = 2,
add_attention: bool = True,
):
super().__init__()
self.temporal_expansion = temporal_expansion
self.spatial_expansion = spatial_expansion
self.conv_in = CogVideoXCausalConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(temporal_expansion, spatial_expansion, spatial_expansion),
stride=(temporal_expansion, spatial_expansion, spatial_expansion),
pad_mode="replicate",
)
resnets = []
norms = []
attentions = []
for _ in range(num_layers):
resnets.append(MochiResnetBlock3D(in_channels=out_channels))
if add_attention:
norms.append(MochiChunkedGroupNorm3D(num_channels=out_channels))
attentions.append(
Attention(
query_dim=out_channels,
heads=out_channels // 32,
dim_head=32,
qk_norm="l2",
is_causal=True,
processor=MochiVaeAttnProcessor2_0(),
)
)
else:
norms.append(None)
attentions.append(None)
self.resnets = nn.ModuleList(resnets)
self.norms = nn.ModuleList(norms)
self.attentions = nn.ModuleList(attentions)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
chunk_size: int = 2**15,
) -> torch.Tensor:
r"""Forward method of the `MochiUpBlock3D` class."""
new_conv_cache = {}
conv_cache = conv_cache or {}
hidden_states, new_conv_cache["conv_in"] = self.conv_in(hidden_states)
for i, (resnet, norm, attn) in enumerate(zip(self.resnets, self.norms, self.attentions)):
conv_cache_key = f"resnet_{i}"
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
conv_cache=conv_cache.get(conv_cache_key),
)
else:
hidden_states, new_conv_cache[conv_cache_key] = resnet(
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
)
if attn is not None:
residual = hidden_states
hidden_states = norm(hidden_states)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).flatten(0, 2).contiguous()
# Perform attention in chunks to avoid following error:
# RuntimeError: CUDA error: invalid configuration argument
if hidden_states.size(0) <= chunk_size:
hidden_states = attn(hidden_states)
else:
hidden_states_chunks = []
for i in range(0, hidden_states.size(0), chunk_size):
hidden_states_chunk = hidden_states[i : i + chunk_size]
hidden_states_chunk = attn(hidden_states_chunk)
hidden_states_chunks.append(hidden_states_chunk)
hidden_states = torch.cat(hidden_states_chunks)
hidden_states = hidden_states.unflatten(0, (batch_size, height, width)).permute(0, 4, 3, 1, 2)
hidden_states = residual + hidden_states
return hidden_states, new_conv_cache
class MochiMidBlock3D(nn.Module):
r"""
A middle block used in the Mochi model.
Args:
in_channels (`int`):
Number of input channels.
num_layers (`int`, defaults to `3`):
Number of resnet blocks in the block.
"""
def __init__(
self,
in_channels: int, # 768
num_layers: int = 3,
add_attention: bool = True,
):
super().__init__()
resnets = []
norms = []
attentions = []
for _ in range(num_layers):
resnets.append(MochiResnetBlock3D(in_channels=in_channels))
if add_attention:
norms.append(MochiChunkedGroupNorm3D(num_channels=in_channels))
attentions.append(
Attention(
query_dim=in_channels,
heads=in_channels // 32,
dim_head=32,
qk_norm="l2",
is_causal=True,
processor=MochiVaeAttnProcessor2_0(),
)
)
else:
norms.append(None)
attentions.append(None)
self.resnets = nn.ModuleList(resnets)
self.norms = nn.ModuleList(norms)
self.attentions = nn.ModuleList(attentions)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.Tensor:
r"""Forward method of the `MochiMidBlock3D` class."""
new_conv_cache = {}
conv_cache = conv_cache or {}
for i, (resnet, norm, attn) in enumerate(zip(self.resnets, self.norms, self.attentions)):
conv_cache_key = f"resnet_{i}"
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, conv_cache=conv_cache.get(conv_cache_key)
)
else:
hidden_states, new_conv_cache[conv_cache_key] = resnet(
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
)
if attn is not None:
residual = hidden_states
hidden_states = norm(hidden_states)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).flatten(0, 2).contiguous()
hidden_states = attn(hidden_states)
hidden_states = hidden_states.unflatten(0, (batch_size, height, width)).permute(0, 4, 3, 1, 2)
hidden_states = residual + hidden_states
return hidden_states, new_conv_cache
class MochiUpBlock3D(nn.Module):
r"""
An upsampling block used in the Mochi model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
num_layers (`int`, defaults to `1`):
Number of resnet blocks in the block.
temporal_expansion (`int`, defaults to `2`):
Temporal expansion factor.
spatial_expansion (`int`, defaults to `2`):
Spatial expansion factor.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
num_layers: int = 1,
temporal_expansion: int = 2,
spatial_expansion: int = 2,
):
super().__init__()
self.temporal_expansion = temporal_expansion
self.spatial_expansion = spatial_expansion
resnets = []
for _ in range(num_layers):
resnets.append(MochiResnetBlock3D(in_channels=in_channels))
self.resnets = nn.ModuleList(resnets)
self.proj = nn.Linear(in_channels, out_channels * temporal_expansion * spatial_expansion**2)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.Tensor:
r"""Forward method of the `MochiUpBlock3D` class."""
new_conv_cache = {}
conv_cache = conv_cache or {}
for i, resnet in enumerate(self.resnets):
conv_cache_key = f"resnet_{i}"
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
conv_cache=conv_cache.get(conv_cache_key),
)
else:
hidden_states, new_conv_cache[conv_cache_key] = resnet(
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
)
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
hidden_states = self.proj(hidden_states)
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
st = self.temporal_expansion
sh = self.spatial_expansion
sw = self.spatial_expansion
# Reshape and unpatchify
hidden_states = hidden_states.view(batch_size, -1, st, sh, sw, num_frames, height, width)
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
hidden_states = hidden_states.view(batch_size, -1, num_frames * st, height * sh, width * sw)
return hidden_states, new_conv_cache
class FourierFeatures(nn.Module):
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
super().__init__()
self.start = start
self.stop = stop
self.step = step
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
r"""Forward method of the `FourierFeatures` class."""
original_dtype = inputs.dtype
inputs = inputs.to(torch.float32)
num_channels = inputs.shape[1]
num_freqs = (self.stop - self.start) // self.step
freqs = torch.arange(self.start, self.stop, self.step, dtype=inputs.dtype, device=inputs.device)
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
w = w.repeat(num_channels)[None, :, None, None, None] # [1, num_channels * num_freqs, 1, 1, 1]
# Interleaved repeat of input channels to match w
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
# Scale channels by frequency.
h = w * h
return torch.cat([inputs, torch.sin(h), torch.cos(h)], dim=1).to(original_dtype)
class MochiEncoder3D(nn.Module):
r"""
The `MochiEncoder3D` layer of a variational autoencoder that encodes input video samples to its latent
representation.
Args:
in_channels (`int`, *optional*):
The number of input channels.
out_channels (`int`, *optional*):
The number of output channels.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(128, 256, 512, 768)`):
The number of output channels for each block.
layers_per_block (`Tuple[int, ...]`, *optional*, defaults to `(3, 3, 4, 6, 3)`):
The number of resnet blocks for each block.
temporal_expansions (`Tuple[int, ...]`, *optional*, defaults to `(1, 2, 3)`):
The temporal expansion factor for each of the up blocks.
spatial_expansions (`Tuple[int, ...]`, *optional*, defaults to `(2, 2, 2)`):
The spatial expansion factor for each of the up blocks.
non_linearity (`str`, *optional*, defaults to `"swish"`):
The non-linearity to use in the decoder.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
block_out_channels: Tuple[int, ...] = (128, 256, 512, 768),
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
add_attention_block: Tuple[bool, ...] = (False, True, True, True, True),
act_fn: str = "swish",
):
super().__init__()
self.nonlinearity = get_activation(act_fn)
self.fourier_features = FourierFeatures()
self.proj_in = nn.Linear(in_channels, block_out_channels[0])
self.block_in = MochiMidBlock3D(
in_channels=block_out_channels[0], num_layers=layers_per_block[0], add_attention=add_attention_block[0]
)
down_blocks = []
for i in range(len(block_out_channels) - 1):
down_block = MochiDownBlock3D(
in_channels=block_out_channels[i],
out_channels=block_out_channels[i + 1],
num_layers=layers_per_block[i + 1],
temporal_expansion=temporal_expansions[i],
spatial_expansion=spatial_expansions[i],
add_attention=add_attention_block[i + 1],
)
down_blocks.append(down_block)
self.down_blocks = nn.ModuleList(down_blocks)
self.block_out = MochiMidBlock3D(
in_channels=block_out_channels[-1], num_layers=layers_per_block[-1], add_attention=add_attention_block[-1]
)
self.norm_out = MochiChunkedGroupNorm3D(block_out_channels[-1])
self.proj_out = nn.Linear(block_out_channels[-1], 2 * out_channels, bias=False)
def forward(
self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
) -> torch.Tensor:
r"""Forward method of the `MochiEncoder3D` class."""
new_conv_cache = {}
conv_cache = conv_cache or {}
hidden_states = self.fourier_features(hidden_states)
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
hidden_states = self.proj_in(hidden_states)
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states, new_conv_cache["block_in"] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.block_in), hidden_states, conv_cache=conv_cache.get("block_in")
)
for i, down_block in enumerate(self.down_blocks):
conv_cache_key = f"down_block_{i}"
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
create_custom_forward(down_block), hidden_states, conv_cache=conv_cache.get(conv_cache_key)
)
else:
hidden_states, new_conv_cache["block_in"] = self.block_in(
hidden_states, conv_cache=conv_cache.get("block_in")
)
for i, down_block in enumerate(self.down_blocks):
conv_cache_key = f"down_block_{i}"
hidden_states, new_conv_cache[conv_cache_key] = down_block(
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
)
hidden_states, new_conv_cache["block_out"] = self.block_out(
hidden_states, conv_cache=conv_cache.get("block_out")
)
hidden_states = self.norm_out(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
return hidden_states, new_conv_cache
class MochiDecoder3D(nn.Module):
r"""
The `MochiDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
sample.
Args:
in_channels (`int`, *optional*):
The number of input channels.
out_channels (`int`, *optional*):
The number of output channels.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(128, 256, 512, 768)`):
The number of output channels for each block.
layers_per_block (`Tuple[int, ...]`, *optional*, defaults to `(3, 3, 4, 6, 3)`):
The number of resnet blocks for each block.
temporal_expansions (`Tuple[int, ...]`, *optional*, defaults to `(1, 2, 3)`):
The temporal expansion factor for each of the up blocks.
spatial_expansions (`Tuple[int, ...]`, *optional*, defaults to `(2, 2, 2)`):
The spatial expansion factor for each of the up blocks.
non_linearity (`str`, *optional*, defaults to `"swish"`):
The non-linearity to use in the decoder.
"""
def __init__(
self,
in_channels: int, # 12
out_channels: int, # 3
block_out_channels: Tuple[int, ...] = (128, 256, 512, 768),
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
act_fn: str = "swish",
):
super().__init__()
self.nonlinearity = get_activation(act_fn)
self.conv_in = nn.Conv3d(in_channels, block_out_channels[-1], kernel_size=(1, 1, 1))
self.block_in = MochiMidBlock3D(
in_channels=block_out_channels[-1],
num_layers=layers_per_block[-1],
add_attention=False,
)
up_blocks = []
for i in range(len(block_out_channels) - 1):
up_block = MochiUpBlock3D(
in_channels=block_out_channels[-i - 1],
out_channels=block_out_channels[-i - 2],
num_layers=layers_per_block[-i - 2],
temporal_expansion=temporal_expansions[-i - 1],
spatial_expansion=spatial_expansions[-i - 1],
)
up_blocks.append(up_block)
self.up_blocks = nn.ModuleList(up_blocks)
self.block_out = MochiMidBlock3D(
in_channels=block_out_channels[0],
num_layers=layers_per_block[0],
add_attention=False,
)
self.proj_out = nn.Linear(block_out_channels[0], out_channels)
self.gradient_checkpointing = False
def forward(
self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
) -> torch.Tensor:
r"""Forward method of the `MochiDecoder3D` class."""
new_conv_cache = {}
conv_cache = conv_cache or {}
hidden_states = self.conv_in(hidden_states)
# 1. Mid
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states, new_conv_cache["block_in"] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.block_in), hidden_states, conv_cache=conv_cache.get("block_in")
)
for i, up_block in enumerate(self.up_blocks):
conv_cache_key = f"up_block_{i}"
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block), hidden_states, conv_cache=conv_cache.get(conv_cache_key)
)
else:
hidden_states, new_conv_cache["block_in"] = self.block_in(
hidden_states, conv_cache=conv_cache.get("block_in")
)
for i, up_block in enumerate(self.up_blocks):
conv_cache_key = f"up_block_{i}"
hidden_states, new_conv_cache[conv_cache_key] = up_block(
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
)
hidden_states, new_conv_cache["block_out"] = self.block_out(
hidden_states, conv_cache=conv_cache.get("block_out")
)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
return hidden_states, new_conv_cache
class AutoencoderKLMochi(ModelMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
[Mochi 1 preview](https://github.com/genmoai/models).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
scaling_factor (`float`, *optional*, defaults to `1.15258426`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["MochiResnetBlock3D"]
@register_to_config
def __init__(
self,
in_channels: int = 15,
out_channels: int = 3,
encoder_block_out_channels: Tuple[int] = (64, 128, 256, 384),
decoder_block_out_channels: Tuple[int] = (128, 256, 512, 768),
latent_channels: int = 12,
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
act_fn: str = "silu",
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
add_attention_block: Tuple[bool, ...] = (False, True, True, True, True),
latents_mean: Tuple[float, ...] = (
-0.06730895953510081,
-0.038011381506090416,
-0.07477820912866141,
-0.05565264470995561,
0.012767231469026969,
-0.04703542746246419,
0.043896967884726704,
-0.09346305707025976,
-0.09918314763016893,
-0.008729793427399178,
-0.011931556316503654,
-0.0321993391887285,
),
latents_std: Tuple[float, ...] = (
0.9263795028493863,
0.9248894543193766,
0.9393059390890617,
0.959253732819592,
0.8244560132752793,
0.917259975397747,
0.9294154431013696,
1.3720942357788521,
0.881393668867029,
0.9168315692124348,
0.9185249279345552,
0.9274757570805041,
),
scaling_factor: float = 1.0,
):
super().__init__()
self.encoder = MochiEncoder3D(
in_channels=in_channels,
out_channels=latent_channels,
block_out_channels=encoder_block_out_channels,
layers_per_block=layers_per_block,
temporal_expansions=temporal_expansions,
spatial_expansions=spatial_expansions,
add_attention_block=add_attention_block,
act_fn=act_fn,
)
self.decoder = MochiDecoder3D(
in_channels=latent_channels,
out_channels=out_channels,
block_out_channels=decoder_block_out_channels,
layers_per_block=layers_per_block,
temporal_expansions=temporal_expansions,
spatial_expansions=spatial_expansions,
act_fn=act_fn,
)
self.spatial_compression_ratio = functools.reduce(lambda x, y: x * y, spatial_expansions, 1)
self.temporal_compression_ratio = functools.reduce(lambda x, y: x * y, temporal_expansions, 1)
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
# to perform decoding of a single video latent at a time.
self.use_slicing = False
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
# intermediate tiles together, the memory requirement can be lowered.
self.use_tiling = False
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
self.use_framewise_encoding = False
self.use_framewise_decoding = False
# This can be used to determine how the number of output frames in the final decoded video. To maintain consistency with
# the original implementation, this defaults to `True`.
# - Original implementation (drop_last_temporal_frames=True):
# Output frames = (latent_frames - 1) * temporal_compression_ratio + 1
# - Without dropping additional temporal upscaled frames (drop_last_temporal_frames=False):
# Output frames = latent_frames * temporal_compression_ratio
# The latter case is useful for frame packing and some training/finetuning scenarios where the additional.
self.drop_last_temporal_frames = True
# This can be configured based on the amount of GPU memory available.
# `12` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
# Setting it to higher values results in higher memory usage.
self.num_sample_frames_batch_size = 12
self.num_latent_frames_batch_size = 2
# The minimal tile height and width for spatial tiling to be used
self.tile_sample_min_height = 256
self.tile_sample_min_width = 256
# The minimal distance between two spatial tiles
self.tile_sample_stride_height = 192
self.tile_sample_stride_width = 192
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (MochiEncoder3D, MochiDecoder3D)):
module.gradient_checkpointing = value
def enable_tiling(
self,
tile_sample_min_height: Optional[int] = None,
tile_sample_min_width: Optional[int] = None,
tile_sample_stride_height: Optional[float] = None,
tile_sample_stride_width: Optional[float] = None,
) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
Args:
tile_sample_min_height (`int`, *optional*):
The minimum height required for a sample to be separated into tiles across the height dimension.
tile_sample_min_width (`int`, *optional*):
The minimum width required for a sample to be separated into tiles across the width dimension.
tile_sample_stride_height (`int`, *optional*):
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
no tiling artifacts produced across the height dimension.
tile_sample_stride_width (`int`, *optional*):
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
artifacts produced across the width dimension.
"""
self.use_tiling = True
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _enable_framewise_encoding(self):
r"""
Enables the framewise VAE encoding implementation with past latent padding. By default, Diffusers uses the
oneshot encoding implementation without current latent replicate padding.
Warning: Framewise encoding may not work as expected due to the causal attention layers. If you enable
framewise encoding, encode a video, and try to decode it, there will be noticeable jittering effect.
"""
self.use_framewise_encoding = True
for name, module in self.named_modules():
if isinstance(module, CogVideoXCausalConv3d):
module.pad_mode = "constant"
def _enable_framewise_decoding(self):
r"""
Enables the framewise VAE decoding implementation with past latent padding. By default, Diffusers uses the
oneshot decoding implementation without current latent replicate padding.
"""
self.use_framewise_decoding = True
for name, module in self.named_modules():
if isinstance(module, CogVideoXCausalConv3d):
module.pad_mode = "constant"
def _encode(self, x: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = x.shape
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
return self.tiled_encode(x)
if self.use_framewise_encoding:
raise NotImplementedError(
"Frame-wise encoding does not work with the Mochi VAE Encoder due to the presence of attention layers. "
"As intermediate frames are not independent from each other, they cannot be encoded frame-wise."
)
else:
enc, _ = self.encoder(x)
return enc
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded videos. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self._encode(x)
posterior = DiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, num_frames, height, width = z.shape
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
return self.tiled_decode(z, return_dict=return_dict)
if self.use_framewise_decoding:
conv_cache = None
dec = []
for i in range(0, num_frames, self.num_latent_frames_batch_size):
z_intermediate = z[:, :, i : i + self.num_latent_frames_batch_size]
z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache)
dec.append(z_intermediate)
dec = torch.cat(dec, dim=2)
else:
dec, _ = self.decoder(z)
if self.drop_last_temporal_frames and dec.size(2) >= self.temporal_compression_ratio:
dec = dec[:, :, self.temporal_compression_ratio - 1 :]
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@apply_forward_hook
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
r"""Encode a batch of images using a tiled encoder.
Args:
x (`torch.Tensor`): Input batch of videos.
Returns:
`torch.Tensor`:
The latent representation of the encoded videos.
"""
batch_size, num_channels, num_frames, height, width = x.shape
latent_height = height // self.spatial_compression_ratio
latent_width = width // self.spatial_compression_ratio
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = tile_latent_min_height - tile_latent_stride_height
blend_width = tile_latent_min_width - tile_latent_stride_width
# Split x into overlapping tiles and encode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, self.tile_sample_stride_height):
row = []
for j in range(0, width, self.tile_sample_stride_width):
if self.use_framewise_encoding:
raise NotImplementedError(
"Frame-wise encoding does not work with the Mochi VAE Encoder due to the presence of attention layers. "
"As intermediate frames are not independent from each other, they cannot be encoded frame-wise."
)
else:
time, _ = self.encoder(
x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
)
row.append(time)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
result_rows.append(torch.cat(result_row, dim=4))
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
return enc
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
batch_size, num_channels, num_frames, height, width = z.shape
sample_height = height * self.spatial_compression_ratio
sample_width = width * self.spatial_compression_ratio
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, tile_latent_stride_height):
row = []
for j in range(0, width, tile_latent_stride_width):
if self.use_framewise_decoding:
time = []
conv_cache = None
for k in range(0, num_frames, self.num_latent_frames_batch_size):
tile = z[
:,
:,
k : k + self.num_latent_frames_batch_size,
i : i + tile_latent_min_height,
j : j + tile_latent_min_width,
]
tile, conv_cache = self.decoder(tile, conv_cache=conv_cache)
time.append(tile)
time = torch.cat(time, dim=2)
else:
time, _ = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width])
if self.drop_last_temporal_frames and time.size(2) >= self.temporal_compression_ratio:
time = time[:, :, self.temporal_compression_ratio - 1 :]
row.append(time)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[torch.Tensor, torch.Tensor]:
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z)
if not return_dict:
return (dec,)
return dec
|