File size: 45,733 Bytes
df4a4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
# Copyright 2024 The RhymesAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...utils.accelerate_utils import apply_forward_hook
from ..attention_processor import Attention, SpatialNorm
from ..autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
from ..downsampling import Downsample2D
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from ..resnet import ResnetBlock2D
from ..upsampling import Upsample2D


class AllegroTemporalConvLayer(nn.Module):
    r"""
    Temporal convolutional layer that can be used for video (sequence of images) input. Code adapted from:
    https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
    """

    def __init__(
        self,
        in_dim: int,
        out_dim: Optional[int] = None,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        up_sample: bool = False,
        down_sample: bool = False,
        stride: int = 1,
    ) -> None:
        super().__init__()

        out_dim = out_dim or in_dim
        pad_h = pad_w = int((stride - 1) * 0.5)
        pad_t = 0

        self.down_sample = down_sample
        self.up_sample = up_sample

        if down_sample:
            self.conv1 = nn.Sequential(
                nn.GroupNorm(norm_num_groups, in_dim),
                nn.SiLU(),
                nn.Conv3d(in_dim, out_dim, (2, stride, stride), stride=(2, 1, 1), padding=(0, pad_h, pad_w)),
            )
        elif up_sample:
            self.conv1 = nn.Sequential(
                nn.GroupNorm(norm_num_groups, in_dim),
                nn.SiLU(),
                nn.Conv3d(in_dim, out_dim * 2, (1, stride, stride), padding=(0, pad_h, pad_w)),
            )
        else:
            self.conv1 = nn.Sequential(
                nn.GroupNorm(norm_num_groups, in_dim),
                nn.SiLU(),
                nn.Conv3d(in_dim, out_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)),
            )
        self.conv2 = nn.Sequential(
            nn.GroupNorm(norm_num_groups, out_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)),
        )
        self.conv3 = nn.Sequential(
            nn.GroupNorm(norm_num_groups, out_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)),
        )
        self.conv4 = nn.Sequential(
            nn.GroupNorm(norm_num_groups, out_dim),
            nn.SiLU(),
            nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)),
        )

    @staticmethod
    def _pad_temporal_dim(hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = torch.cat((hidden_states[:, :, 0:1], hidden_states), dim=2)
        hidden_states = torch.cat((hidden_states, hidden_states[:, :, -1:]), dim=2)
        return hidden_states

    def forward(self, hidden_states: torch.Tensor, batch_size: int) -> torch.Tensor:
        hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)

        if self.down_sample:
            identity = hidden_states[:, :, ::2]
        elif self.up_sample:
            identity = hidden_states.repeat_interleave(2, dim=2)
        else:
            identity = hidden_states

        if self.down_sample or self.up_sample:
            hidden_states = self.conv1(hidden_states)
        else:
            hidden_states = self._pad_temporal_dim(hidden_states)
            hidden_states = self.conv1(hidden_states)

        if self.up_sample:
            hidden_states = hidden_states.unflatten(1, (2, -1)).permute(0, 2, 3, 1, 4, 5).flatten(2, 3)

        hidden_states = self._pad_temporal_dim(hidden_states)
        hidden_states = self.conv2(hidden_states)

        hidden_states = self._pad_temporal_dim(hidden_states)
        hidden_states = self.conv3(hidden_states)

        hidden_states = self._pad_temporal_dim(hidden_states)
        hidden_states = self.conv4(hidden_states)

        hidden_states = identity + hidden_states
        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)

        return hidden_states


class AllegroDownBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor: float = 1.0,
        spatial_downsample: bool = True,
        temporal_downsample: bool = False,
        downsample_padding: int = 1,
    ):
        super().__init__()

        resnets = []
        temp_convs = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                AllegroTemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
                    norm_num_groups=resnet_groups,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)

        if temporal_downsample:
            self.temp_convs_down = AllegroTemporalConvLayer(
                out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, down_sample=True, stride=3
            )
        self.add_temp_downsample = temporal_downsample

        if spatial_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size = hidden_states.shape[0]

        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)

        for resnet, temp_conv in zip(self.resnets, self.temp_convs):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = temp_conv(hidden_states, batch_size=batch_size)

        if self.add_temp_downsample:
            hidden_states = self.temp_convs_down(hidden_states, batch_size=batch_size)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        return hidden_states


class AllegroUpBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",  # default, spatial
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor: float = 1.0,
        spatial_upsample: bool = True,
        temporal_upsample: bool = False,
        temb_channels: Optional[int] = None,
    ):
        super().__init__()

        resnets = []
        temp_convs = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                AllegroTemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
                    norm_num_groups=resnet_groups,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)

        self.add_temp_upsample = temporal_upsample
        if temporal_upsample:
            self.temp_conv_up = AllegroTemporalConvLayer(
                out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, up_sample=True, stride=3
            )

        if spatial_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size = hidden_states.shape[0]

        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)

        for resnet, temp_conv in zip(self.resnets, self.temp_convs):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = temp_conv(hidden_states, batch_size=batch_size)

        if self.add_temp_upsample:
            hidden_states = self.temp_conv_up(hidden_states, batch_size=batch_size)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        return hidden_states


class AllegroMidBlock3DConv(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",  # default, spatial
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        add_attention: bool = True,
        attention_head_dim: int = 1,
        output_scale_factor: float = 1.0,
    ):
        super().__init__()

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        temp_convs = [
            AllegroTemporalConvLayer(
                in_channels,
                in_channels,
                dropout=0.1,
                norm_num_groups=resnet_groups,
            )
        ]
        attentions = []

        if attention_head_dim is None:
            attention_head_dim = in_channels

        for _ in range(num_layers):
            if add_attention:
                attentions.append(
                    Attention(
                        in_channels,
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
                        norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
                    )
                )
            else:
                attentions.append(None)

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

            temp_convs.append(
                AllegroTemporalConvLayer(
                    in_channels,
                    in_channels,
                    dropout=0.1,
                    norm_num_groups=resnet_groups,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)
        self.attentions = nn.ModuleList(attentions)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size = hidden_states.shape[0]

        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
        hidden_states = self.resnets[0](hidden_states, temb=None)

        hidden_states = self.temp_convs[0](hidden_states, batch_size=batch_size)

        for attn, resnet, temp_conv in zip(self.attentions, self.resnets[1:], self.temp_convs[1:]):
            hidden_states = attn(hidden_states)
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = temp_conv(hidden_states, batch_size=batch_size)

        hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        return hidden_states


class AllegroEncoder3D(nn.Module):
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = (
            "AllegroDownBlock3D",
            "AllegroDownBlock3D",
            "AllegroDownBlock3D",
            "AllegroDownBlock3D",
        ),
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
        temporal_downsample_blocks: Tuple[bool, ...] = [True, True, False, False],
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        double_z: bool = True,
    ):
        super().__init__()

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.temp_conv_in = nn.Conv3d(
            in_channels=block_out_channels[0],
            out_channels=block_out_channels[0],
            kernel_size=(3, 1, 1),
            padding=(1, 0, 0),
        )

        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            if down_block_type == "AllegroDownBlock3D":
                down_block = AllegroDownBlock3D(
                    num_layers=layers_per_block,
                    in_channels=input_channel,
                    out_channels=output_channel,
                    spatial_downsample=not is_final_block,
                    temporal_downsample=temporal_downsample_blocks[i],
                    resnet_eps=1e-6,
                    downsample_padding=0,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                )
            else:
                raise ValueError("Invalid `down_block_type` encountered. Must be `AllegroDownBlock3D`")

            self.down_blocks.append(down_block)

        # mid
        self.mid_block = AllegroMidBlock3DConv(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=None,
        )

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels

        self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0))
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)

        self.gradient_checkpointing = False

    def forward(self, sample: torch.Tensor) -> torch.Tensor:
        batch_size = sample.shape[0]

        sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
        sample = self.conv_in(sample)

        sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        residual = sample
        sample = self.temp_conv_in(sample)
        sample = sample + residual

        if torch.is_grad_enabled() and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # Down blocks
            for down_block in self.down_blocks:
                sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)

            # Mid block
            sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
        else:
            # Down blocks
            for down_block in self.down_blocks:
                sample = down_block(sample)

            # Mid block
            sample = self.mid_block(sample)

        # Post process
        sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)

        sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        residual = sample
        sample = self.temp_conv_out(sample)
        sample = sample + residual

        sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
        sample = self.conv_out(sample)

        sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        return sample


class AllegroDecoder3D(nn.Module):
    def __init__(
        self,
        in_channels: int = 4,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = (
            "AllegroUpBlock3D",
            "AllegroUpBlock3D",
            "AllegroUpBlock3D",
            "AllegroUpBlock3D",
        ),
        temporal_upsample_blocks: Tuple[bool, ...] = [False, True, True, False],
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
    ):
        super().__init__()

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.temp_conv_in = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0))

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = AllegroMidBlock3DConv(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            if up_block_type == "AllegroUpBlock3D":
                up_block = AllegroUpBlock3D(
                    num_layers=layers_per_block + 1,
                    in_channels=prev_output_channel,
                    out_channels=output_channel,
                    spatial_upsample=not is_final_block,
                    temporal_upsample=temporal_upsample_blocks[i],
                    resnet_eps=1e-6,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                    temb_channels=temb_channels,
                    resnet_time_scale_shift=norm_type,
                )
            else:
                raise ValueError("Invalid `UP_block_type` encountered. Must be `AllegroUpBlock3D`")

            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)

        self.conv_act = nn.SiLU()

        self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3, 1, 1), padding=(1, 0, 0))
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

        self.gradient_checkpointing = False

    def forward(self, sample: torch.Tensor) -> torch.Tensor:
        batch_size = sample.shape[0]

        sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
        sample = self.conv_in(sample)

        sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        residual = sample
        sample = self.temp_conv_in(sample)
        sample = sample + residual

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype

        if torch.is_grad_enabled() and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # Mid block
            sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)

            # Up blocks
            for up_block in self.up_blocks:
                sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample)

        else:
            # Mid block
            sample = self.mid_block(sample)
            sample = sample.to(upscale_dtype)

            # Up blocks
            for up_block in self.up_blocks:
                sample = up_block(sample)

        # Post process
        sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)

        sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        residual = sample
        sample = self.temp_conv_out(sample)
        sample = sample + residual

        sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
        sample = self.conv_out(sample)

        sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        return sample


class AutoencoderKLAllegro(ModelMixin, ConfigMixin):
    r"""
    A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used in
    [Allegro](https://github.com/rhymes-ai/Allegro).

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Parameters:
        in_channels (int, defaults to `3`):
            Number of channels in the input image.
        out_channels (int, defaults to `3`):
            Number of channels in the output.
        down_block_types (`Tuple[str, ...]`, defaults to `("AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D")`):
            Tuple of strings denoting which types of down blocks to use.
        up_block_types (`Tuple[str, ...]`, defaults to `("AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D")`):
            Tuple of strings denoting which types of up blocks to use.
        block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
            Tuple of integers denoting number of output channels in each block.
        temporal_downsample_blocks (`Tuple[bool, ...]`, defaults to `(True, True, False, False)`):
            Tuple of booleans denoting which blocks to enable temporal downsampling in.
        latent_channels (`int`, defaults to `4`):
            Number of channels in latents.
        layers_per_block (`int`, defaults to `2`):
            Number of resnet or attention or temporal convolution layers per down/up block.
        act_fn (`str`, defaults to `"silu"`):
            The activation function to use.
        norm_num_groups (`int`, defaults to `32`):
            Number of groups to use in normalization layers.
        temporal_compression_ratio (`int`, defaults to `4`):
            Ratio by which temporal dimension of samples are compressed.
        sample_size (`int`, defaults to `320`):
            Default latent size.
        scaling_factor (`float`, defaults to `0.13235`):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        force_upcast (`bool`, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without loosing too much precision in which case
            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = (
            "AllegroDownBlock3D",
            "AllegroDownBlock3D",
            "AllegroDownBlock3D",
            "AllegroDownBlock3D",
        ),
        up_block_types: Tuple[str, ...] = (
            "AllegroUpBlock3D",
            "AllegroUpBlock3D",
            "AllegroUpBlock3D",
            "AllegroUpBlock3D",
        ),
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
        temporal_downsample_blocks: Tuple[bool, ...] = (True, True, False, False),
        temporal_upsample_blocks: Tuple[bool, ...] = (False, True, True, False),
        latent_channels: int = 4,
        layers_per_block: int = 2,
        act_fn: str = "silu",
        norm_num_groups: int = 32,
        temporal_compression_ratio: float = 4,
        sample_size: int = 320,
        scaling_factor: float = 0.13,
        force_upcast: bool = True,
    ) -> None:
        super().__init__()

        self.encoder = AllegroEncoder3D(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            temporal_downsample_blocks=temporal_downsample_blocks,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
        )
        self.decoder = AllegroDecoder3D(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            temporal_upsample_blocks=temporal_upsample_blocks,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
        )
        self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
        self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)

        # TODO(aryan): For the 1.0.0 refactor, `temporal_compression_ratio` can be inferred directly and we don't need
        # to use a specific parameter here or in other VAEs.

        self.use_slicing = False
        self.use_tiling = False

        self.spatial_compression_ratio = 2 ** (len(block_out_channels) - 1)
        self.tile_overlap_t = 8
        self.tile_overlap_h = 120
        self.tile_overlap_w = 80
        sample_frames = 24

        self.kernel = (sample_frames, sample_size, sample_size)
        self.stride = (
            sample_frames - self.tile_overlap_t,
            sample_size - self.tile_overlap_h,
            sample_size - self.tile_overlap_w,
        )

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (AllegroEncoder3D, AllegroDecoder3D)):
            module.gradient_checkpointing = value

    def enable_tiling(self) -> None:
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.use_tiling = True

    def disable_tiling(self) -> None:
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_tiling = False

    def enable_slicing(self) -> None:
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self) -> None:
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

    def _encode(self, x: torch.Tensor) -> torch.Tensor:
        # TODO(aryan)
        # if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
        if self.use_tiling:
            return self.tiled_encode(x)

        raise NotImplementedError("Encoding without tiling has not been implemented yet.")

    @apply_forward_hook
    def encode(
        self, x: torch.Tensor, return_dict: bool = True
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        r"""
        Encode a batch of videos into latents.

        Args:
            x (`torch.Tensor`):
                Input batch of videos.
            return_dict (`bool`, defaults to `True`):
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

        Returns:
                The latent representations of the encoded videos. If `return_dict` is True, a
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
        """
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self._encode(x)

        posterior = DiagonalGaussianDistribution(h)

        if not return_dict:
            return (posterior,)
        return AutoencoderKLOutput(latent_dist=posterior)

    def _decode(self, z: torch.Tensor) -> torch.Tensor:
        # TODO(aryan): refactor tiling implementation
        # if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
        if self.use_tiling:
            return self.tiled_decode(z)

        raise NotImplementedError("Decoding without tiling has not been implemented yet.")

    @apply_forward_hook
    def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
        """
        Decode a batch of videos.

        Args:
            z (`torch.Tensor`):
                Input batch of latent vectors.
            return_dict (`bool`, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice) for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z)

        if not return_dict:
            return (decoded,)
        return DecoderOutput(sample=decoded)

    def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
        local_batch_size = 1
        rs = self.spatial_compression_ratio
        rt = self.config.temporal_compression_ratio

        batch_size, num_channels, num_frames, height, width = x.shape

        output_num_frames = math.floor((num_frames - self.kernel[0]) / self.stride[0]) + 1
        output_height = math.floor((height - self.kernel[1]) / self.stride[1]) + 1
        output_width = math.floor((width - self.kernel[2]) / self.stride[2]) + 1

        count = 0
        output_latent = x.new_zeros(
            (
                output_num_frames * output_height * output_width,
                2 * self.config.latent_channels,
                self.kernel[0] // rt,
                self.kernel[1] // rs,
                self.kernel[2] // rs,
            )
        )
        vae_batch_input = x.new_zeros((local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2]))

        for i in range(output_num_frames):
            for j in range(output_height):
                for k in range(output_width):
                    n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0]
                    h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1]
                    w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2]

                    video_cube = x[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
                    vae_batch_input[count % local_batch_size] = video_cube

                    if (
                        count % local_batch_size == local_batch_size - 1
                        or count == output_num_frames * output_height * output_width - 1
                    ):
                        latent = self.encoder(vae_batch_input)

                        if (
                            count == output_num_frames * output_height * output_width - 1
                            and count % local_batch_size != local_batch_size - 1
                        ):
                            output_latent[count - count % local_batch_size :] = latent[: count % local_batch_size + 1]
                        else:
                            output_latent[count - local_batch_size + 1 : count + 1] = latent

                        vae_batch_input = x.new_zeros(
                            (local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2])
                        )

                    count += 1

        latent = x.new_zeros(
            (batch_size, 2 * self.config.latent_channels, num_frames // rt, height // rs, width // rs)
        )
        output_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs
        output_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs
        output_overlap = (
            output_kernel[0] - output_stride[0],
            output_kernel[1] - output_stride[1],
            output_kernel[2] - output_stride[2],
        )

        for i in range(output_num_frames):
            n_start, n_end = i * output_stride[0], i * output_stride[0] + output_kernel[0]
            for j in range(output_height):
                h_start, h_end = j * output_stride[1], j * output_stride[1] + output_kernel[1]
                for k in range(output_width):
                    w_start, w_end = k * output_stride[2], k * output_stride[2] + output_kernel[2]
                    latent_mean = _prepare_for_blend(
                        (i, output_num_frames, output_overlap[0]),
                        (j, output_height, output_overlap[1]),
                        (k, output_width, output_overlap[2]),
                        output_latent[i * output_height * output_width + j * output_width + k].unsqueeze(0),
                    )
                    latent[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean

        latent = latent.permute(0, 2, 1, 3, 4).flatten(0, 1)
        latent = self.quant_conv(latent)
        latent = latent.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
        return latent

    def tiled_decode(self, z: torch.Tensor) -> torch.Tensor:
        local_batch_size = 1
        rs = self.spatial_compression_ratio
        rt = self.config.temporal_compression_ratio

        latent_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs
        latent_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs

        batch_size, num_channels, num_frames, height, width = z.shape

        ## post quant conv (a mapping)
        z = z.permute(0, 2, 1, 3, 4).flatten(0, 1)
        z = self.post_quant_conv(z)
        z = z.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)

        output_num_frames = math.floor((num_frames - latent_kernel[0]) / latent_stride[0]) + 1
        output_height = math.floor((height - latent_kernel[1]) / latent_stride[1]) + 1
        output_width = math.floor((width - latent_kernel[2]) / latent_stride[2]) + 1

        count = 0
        decoded_videos = z.new_zeros(
            (
                output_num_frames * output_height * output_width,
                self.config.out_channels,
                self.kernel[0],
                self.kernel[1],
                self.kernel[2],
            )
        )
        vae_batch_input = z.new_zeros(
            (local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2])
        )

        for i in range(output_num_frames):
            for j in range(output_height):
                for k in range(output_width):
                    n_start, n_end = i * latent_stride[0], i * latent_stride[0] + latent_kernel[0]
                    h_start, h_end = j * latent_stride[1], j * latent_stride[1] + latent_kernel[1]
                    w_start, w_end = k * latent_stride[2], k * latent_stride[2] + latent_kernel[2]

                    current_latent = z[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
                    vae_batch_input[count % local_batch_size] = current_latent

                    if (
                        count % local_batch_size == local_batch_size - 1
                        or count == output_num_frames * output_height * output_width - 1
                    ):
                        current_video = self.decoder(vae_batch_input)

                        if (
                            count == output_num_frames * output_height * output_width - 1
                            and count % local_batch_size != local_batch_size - 1
                        ):
                            decoded_videos[count - count % local_batch_size :] = current_video[
                                : count % local_batch_size + 1
                            ]
                        else:
                            decoded_videos[count - local_batch_size + 1 : count + 1] = current_video

                        vae_batch_input = z.new_zeros(
                            (local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2])
                        )

                    count += 1

        video = z.new_zeros((batch_size, self.config.out_channels, num_frames * rt, height * rs, width * rs))
        video_overlap = (
            self.kernel[0] - self.stride[0],
            self.kernel[1] - self.stride[1],
            self.kernel[2] - self.stride[2],
        )

        for i in range(output_num_frames):
            n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0]
            for j in range(output_height):
                h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1]
                for k in range(output_width):
                    w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2]
                    out_video_blend = _prepare_for_blend(
                        (i, output_num_frames, video_overlap[0]),
                        (j, output_height, video_overlap[1]),
                        (k, output_width, video_overlap[2]),
                        decoded_videos[i * output_height * output_width + j * output_width + k].unsqueeze(0),
                    )
                    video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend

        video = video.permute(0, 2, 1, 3, 4).contiguous()
        return video

    def forward(
        self,
        sample: torch.Tensor,
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> Union[DecoderOutput, torch.Tensor]:
        r"""
        Args:
            sample (`torch.Tensor`): Input sample.
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
            generator (`torch.Generator`, *optional*):
                PyTorch random number generator.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)


def _prepare_for_blend(n_param, h_param, w_param, x):
    # TODO(aryan): refactor
    n, n_max, overlap_n = n_param
    h, h_max, overlap_h = h_param
    w, w_max, overlap_w = w_param
    if overlap_n > 0:
        if n > 0:  # the head overlap part decays from 0 to 1
            x[:, :, 0:overlap_n, :, :] = x[:, :, 0:overlap_n, :, :] * (
                torch.arange(0, overlap_n).float().to(x.device) / overlap_n
            ).reshape(overlap_n, 1, 1)
        if n < n_max - 1:  # the tail overlap part decays from 1 to 0
            x[:, :, -overlap_n:, :, :] = x[:, :, -overlap_n:, :, :] * (
                1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n
            ).reshape(overlap_n, 1, 1)
    if h > 0:
        x[:, :, :, 0:overlap_h, :] = x[:, :, :, 0:overlap_h, :] * (
            torch.arange(0, overlap_h).float().to(x.device) / overlap_h
        ).reshape(overlap_h, 1)
    if h < h_max - 1:
        x[:, :, :, -overlap_h:, :] = x[:, :, :, -overlap_h:, :] * (
            1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h
        ).reshape(overlap_h, 1)
    if w > 0:
        x[:, :, :, :, 0:overlap_w] = x[:, :, :, :, 0:overlap_w] * (
            torch.arange(0, overlap_w).float().to(x.device) / overlap_w
        )
    if w < w_max - 1:
        x[:, :, :, :, -overlap_w:] = x[:, :, :, :, -overlap_w:] * (
            1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w
        )
    return x