File size: 25,014 Bytes
df4a4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# Copyright 2024 MIT, Tsinghua University, NVIDIA CORPORATION and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..attention_processor import SanaMultiscaleLinearAttention
from ..modeling_utils import ModelMixin
from ..normalization import RMSNorm, get_normalization
from ..transformers.sana_transformer import GLUMBConv
from .vae import DecoderOutput, EncoderOutput


class ResBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        norm_type: str = "batch_norm",
        act_fn: str = "relu6",
    ) -> None:
        super().__init__()

        self.norm_type = norm_type

        self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity()
        self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
        self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
        self.norm = get_normalization(norm_type, out_channels)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.conv1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.norm_type == "rms_norm":
            # move channel to the last dimension so we apply RMSnorm across channel dimension
            hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
        else:
            hidden_states = self.norm(hidden_states)

        return hidden_states + residual


class EfficientViTBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        mult: float = 1.0,
        attention_head_dim: int = 32,
        qkv_multiscales: Tuple[int, ...] = (5,),
        norm_type: str = "batch_norm",
    ) -> None:
        super().__init__()

        self.attn = SanaMultiscaleLinearAttention(
            in_channels=in_channels,
            out_channels=in_channels,
            mult=mult,
            attention_head_dim=attention_head_dim,
            norm_type=norm_type,
            kernel_sizes=qkv_multiscales,
            residual_connection=True,
        )

        self.conv_out = GLUMBConv(
            in_channels=in_channels,
            out_channels=in_channels,
            norm_type="rms_norm",
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.attn(x)
        x = self.conv_out(x)
        return x


def get_block(
    block_type: str,
    in_channels: int,
    out_channels: int,
    attention_head_dim: int,
    norm_type: str,
    act_fn: str,
    qkv_mutliscales: Tuple[int] = (),
):
    if block_type == "ResBlock":
        block = ResBlock(in_channels, out_channels, norm_type, act_fn)

    elif block_type == "EfficientViTBlock":
        block = EfficientViTBlock(
            in_channels, attention_head_dim=attention_head_dim, norm_type=norm_type, qkv_multiscales=qkv_mutliscales
        )

    else:
        raise ValueError(f"Block with {block_type=} is not supported.")

    return block


class DCDownBlock2d(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None:
        super().__init__()

        self.downsample = downsample
        self.factor = 2
        self.stride = 1 if downsample else 2
        self.group_size = in_channels * self.factor**2 // out_channels
        self.shortcut = shortcut

        out_ratio = self.factor**2
        if downsample:
            assert out_channels % out_ratio == 0
            out_channels = out_channels // out_ratio

        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=3,
            stride=self.stride,
            padding=1,
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        x = self.conv(hidden_states)
        if self.downsample:
            x = F.pixel_unshuffle(x, self.factor)

        if self.shortcut:
            y = F.pixel_unshuffle(hidden_states, self.factor)
            y = y.unflatten(1, (-1, self.group_size))
            y = y.mean(dim=2)
            hidden_states = x + y
        else:
            hidden_states = x

        return hidden_states


class DCUpBlock2d(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        interpolate: bool = False,
        shortcut: bool = True,
        interpolation_mode: str = "nearest",
    ) -> None:
        super().__init__()

        self.interpolate = interpolate
        self.interpolation_mode = interpolation_mode
        self.shortcut = shortcut
        self.factor = 2
        self.repeats = out_channels * self.factor**2 // in_channels

        out_ratio = self.factor**2

        if not interpolate:
            out_channels = out_channels * out_ratio

        self.conv = nn.Conv2d(in_channels, out_channels, 3, 1, 1)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        if self.interpolate:
            x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode)
            x = self.conv(x)
        else:
            x = self.conv(hidden_states)
            x = F.pixel_shuffle(x, self.factor)

        if self.shortcut:
            y = hidden_states.repeat_interleave(self.repeats, dim=1)
            y = F.pixel_shuffle(y, self.factor)
            hidden_states = x + y
        else:
            hidden_states = x

        return hidden_states


class Encoder(nn.Module):
    def __init__(
        self,
        in_channels: int,
        latent_channels: int,
        attention_head_dim: int = 32,
        block_type: Union[str, Tuple[str]] = "ResBlock",
        block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024),
        layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2),
        qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
        downsample_block_type: str = "pixel_unshuffle",
        out_shortcut: bool = True,
    ):
        super().__init__()

        num_blocks = len(block_out_channels)

        if isinstance(block_type, str):
            block_type = (block_type,) * num_blocks

        if layers_per_block[0] > 0:
            self.conv_in = nn.Conv2d(
                in_channels,
                block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
                kernel_size=3,
                stride=1,
                padding=1,
            )
        else:
            self.conv_in = DCDownBlock2d(
                in_channels=in_channels,
                out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
                downsample=downsample_block_type == "pixel_unshuffle",
                shortcut=False,
            )

        down_blocks = []
        for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)):
            down_block_list = []

            for _ in range(num_layers):
                block = get_block(
                    block_type[i],
                    out_channel,
                    out_channel,
                    attention_head_dim=attention_head_dim,
                    norm_type="rms_norm",
                    act_fn="silu",
                    qkv_mutliscales=qkv_multiscales[i],
                )
                down_block_list.append(block)

            if i < num_blocks - 1 and num_layers > 0:
                downsample_block = DCDownBlock2d(
                    in_channels=out_channel,
                    out_channels=block_out_channels[i + 1],
                    downsample=downsample_block_type == "pixel_unshuffle",
                    shortcut=True,
                )
                down_block_list.append(downsample_block)

            down_blocks.append(nn.Sequential(*down_block_list))

        self.down_blocks = nn.ModuleList(down_blocks)

        self.conv_out = nn.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1)

        self.out_shortcut = out_shortcut
        if out_shortcut:
            self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.conv_in(hidden_states)
        for down_block in self.down_blocks:
            hidden_states = down_block(hidden_states)

        if self.out_shortcut:
            x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
            x = x.mean(dim=2)
            hidden_states = self.conv_out(hidden_states) + x
        else:
            hidden_states = self.conv_out(hidden_states)

        return hidden_states


class Decoder(nn.Module):
    def __init__(
        self,
        in_channels: int,
        latent_channels: int,
        attention_head_dim: int = 32,
        block_type: Union[str, Tuple[str]] = "ResBlock",
        block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024),
        layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2),
        qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
        norm_type: Union[str, Tuple[str]] = "rms_norm",
        act_fn: Union[str, Tuple[str]] = "silu",
        upsample_block_type: str = "pixel_shuffle",
        in_shortcut: bool = True,
    ):
        super().__init__()

        num_blocks = len(block_out_channels)

        if isinstance(block_type, str):
            block_type = (block_type,) * num_blocks
        if isinstance(norm_type, str):
            norm_type = (norm_type,) * num_blocks
        if isinstance(act_fn, str):
            act_fn = (act_fn,) * num_blocks

        self.conv_in = nn.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1)

        self.in_shortcut = in_shortcut
        if in_shortcut:
            self.in_shortcut_repeats = block_out_channels[-1] // latent_channels

        up_blocks = []
        for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))):
            up_block_list = []

            if i < num_blocks - 1 and num_layers > 0:
                upsample_block = DCUpBlock2d(
                    block_out_channels[i + 1],
                    out_channel,
                    interpolate=upsample_block_type == "interpolate",
                    shortcut=True,
                )
                up_block_list.append(upsample_block)

            for _ in range(num_layers):
                block = get_block(
                    block_type[i],
                    out_channel,
                    out_channel,
                    attention_head_dim=attention_head_dim,
                    norm_type=norm_type[i],
                    act_fn=act_fn[i],
                    qkv_mutliscales=qkv_multiscales[i],
                )
                up_block_list.append(block)

            up_blocks.insert(0, nn.Sequential(*up_block_list))

        self.up_blocks = nn.ModuleList(up_blocks)

        channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1]

        self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True)
        self.conv_act = nn.ReLU()
        self.conv_out = None

        if layers_per_block[0] > 0:
            self.conv_out = nn.Conv2d(channels, in_channels, 3, 1, 1)
        else:
            self.conv_out = DCUpBlock2d(
                channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False
            )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        if self.in_shortcut:
            x = hidden_states.repeat_interleave(self.in_shortcut_repeats, dim=1)
            hidden_states = self.conv_in(hidden_states) + x
        else:
            hidden_states = self.conv_in(hidden_states)

        for up_block in reversed(self.up_blocks):
            hidden_states = up_block(hidden_states)

        hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)
        return hidden_states


class AutoencoderDC(ModelMixin, ConfigMixin, FromOriginalModelMixin):
    r"""
    An Autoencoder model introduced in [DCAE](https://arxiv.org/abs/2410.10733) and used in
    [SANA](https://arxiv.org/abs/2410.10629).

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Args:
        in_channels (`int`, defaults to `3`):
            The number of input channels in samples.
        latent_channels (`int`, defaults to `32`):
            The number of channels in the latent space representation.
        encoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`):
            The type(s) of block to use in the encoder.
        decoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`):
            The type(s) of block to use in the decoder.
        encoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`):
            The number of output channels for each block in the encoder.
        decoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`):
            The number of output channels for each block in the decoder.
        encoder_layers_per_block (`Tuple[int]`, defaults to `(2, 2, 2, 3, 3, 3)`):
            The number of layers per block in the encoder.
        decoder_layers_per_block (`Tuple[int]`, defaults to `(3, 3, 3, 3, 3, 3)`):
            The number of layers per block in the decoder.
        encoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`):
            Multi-scale configurations for the encoder's QKV (query-key-value) transformations.
        decoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`):
            Multi-scale configurations for the decoder's QKV (query-key-value) transformations.
        upsample_block_type (`str`, defaults to `"pixel_shuffle"`):
            The type of block to use for upsampling in the decoder.
        downsample_block_type (`str`, defaults to `"pixel_unshuffle"`):
            The type of block to use for downsampling in the encoder.
        decoder_norm_types (`Union[str, Tuple[str]]`, defaults to `"rms_norm"`):
            The normalization type(s) to use in the decoder.
        decoder_act_fns (`Union[str, Tuple[str]]`, defaults to `"silu"`):
            The activation function(s) to use in the decoder.
        scaling_factor (`float`, defaults to `1.0`):
            The multiplicative inverse of the root mean square of the latent features. This is used to scale the latent
            space to have unit variance when training the diffusion model. The latents are scaled with the formula `z =
            z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back
            to the original scale with the formula: `z = 1 / scaling_factor * z`.
    """

    _supports_gradient_checkpointing = False

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        latent_channels: int = 32,
        attention_head_dim: int = 32,
        encoder_block_types: Union[str, Tuple[str]] = "ResBlock",
        decoder_block_types: Union[str, Tuple[str]] = "ResBlock",
        encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024),
        decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024),
        encoder_layers_per_block: Tuple[int] = (2, 2, 2, 3, 3, 3),
        decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3, 3, 3),
        encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
        decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
        upsample_block_type: str = "pixel_shuffle",
        downsample_block_type: str = "pixel_unshuffle",
        decoder_norm_types: Union[str, Tuple[str]] = "rms_norm",
        decoder_act_fns: Union[str, Tuple[str]] = "silu",
        scaling_factor: float = 1.0,
    ) -> None:
        super().__init__()

        self.encoder = Encoder(
            in_channels=in_channels,
            latent_channels=latent_channels,
            attention_head_dim=attention_head_dim,
            block_type=encoder_block_types,
            block_out_channels=encoder_block_out_channels,
            layers_per_block=encoder_layers_per_block,
            qkv_multiscales=encoder_qkv_multiscales,
            downsample_block_type=downsample_block_type,
        )
        self.decoder = Decoder(
            in_channels=in_channels,
            latent_channels=latent_channels,
            attention_head_dim=attention_head_dim,
            block_type=decoder_block_types,
            block_out_channels=decoder_block_out_channels,
            layers_per_block=decoder_layers_per_block,
            qkv_multiscales=decoder_qkv_multiscales,
            norm_type=decoder_norm_types,
            act_fn=decoder_act_fns,
            upsample_block_type=upsample_block_type,
        )

        self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1)
        self.temporal_compression_ratio = 1

        # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
        # to perform decoding of a single video latent at a time.
        self.use_slicing = False

        # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
        # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
        # intermediate tiles together, the memory requirement can be lowered.
        self.use_tiling = False

        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 512
        self.tile_sample_min_width = 512

        # The minimal distance between two spatial tiles
        self.tile_sample_stride_height = 448
        self.tile_sample_stride_width = 448

    def enable_tiling(
        self,
        tile_sample_min_height: Optional[int] = None,
        tile_sample_min_width: Optional[int] = None,
        tile_sample_stride_height: Optional[float] = None,
        tile_sample_stride_width: Optional[float] = None,
    ) -> None:
        r"""
        Enable tiled AE decoding. When this option is enabled, the AE will split the input tensor into tiles to compute
        decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.

        Args:
            tile_sample_min_height (`int`, *optional*):
                The minimum height required for a sample to be separated into tiles across the height dimension.
            tile_sample_min_width (`int`, *optional*):
                The minimum width required for a sample to be separated into tiles across the width dimension.
            tile_sample_stride_height (`int`, *optional*):
                The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
                no tiling artifacts produced across the height dimension.
            tile_sample_stride_width (`int`, *optional*):
                The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
                artifacts produced across the width dimension.
        """
        self.use_tiling = True
        self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
        self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
        self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
        self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width

    def disable_tiling(self) -> None:
        r"""
        Disable tiled AE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_tiling = False

    def enable_slicing(self) -> None:
        r"""
        Enable sliced AE decoding. When this option is enabled, the AE will split the input tensor in slices to compute
        decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self) -> None:
        r"""
        Disable sliced AE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

    def _encode(self, x: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, height, width = x.shape

        if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
            return self.tiled_encode(x, return_dict=False)[0]

        encoded = self.encoder(x)

        return encoded

    @apply_forward_hook
    def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[EncoderOutput, Tuple[torch.Tensor]]:
        r"""
        Encode a batch of images into latents.

        Args:
            x (`torch.Tensor`): Input batch of images.
            return_dict (`bool`, defaults to `True`):
                Whether to return a [`~models.vae.EncoderOutput`] instead of a plain tuple.

        Returns:
                The latent representations of the encoded videos. If `return_dict` is True, a
                [`~models.vae.EncoderOutput`] is returned, otherwise a plain `tuple` is returned.
        """
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
            encoded = torch.cat(encoded_slices)
        else:
            encoded = self._encode(x)

        if not return_dict:
            return (encoded,)
        return EncoderOutput(latent=encoded)

    def _decode(self, z: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, height, width = z.shape

        if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
            return self.tiled_decode(z, return_dict=False)[0]

        decoded = self.decoder(z)

        return decoded

    @apply_forward_hook
    def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
        r"""
        Decode a batch of images.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """
        if self.use_slicing and z.size(0) > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z)

        if not return_dict:
            return (decoded,)
        return DecoderOutput(sample=decoded)

    def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> torch.Tensor:
        raise NotImplementedError("`tiled_encode` has not been implemented for AutoencoderDC.")

    def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
        raise NotImplementedError("`tiled_decode` has not been implemented for AutoencoderDC.")

    def forward(self, sample: torch.Tensor, return_dict: bool = True) -> torch.Tensor:
        encoded = self.encode(sample, return_dict=False)[0]
        decoded = self.decode(encoded, return_dict=False)[0]
        if not return_dict:
            return (decoded,)
        return DecoderOutput(sample=decoded)