File size: 4,940 Bytes
6b2ee90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import time
import os
import joblib
import streamlit as st
from utils.questions_dataset import system_instruction, get_model_tools
from google.genai import types
from google import genai

# GOOGLE_API_KEY=os.environ.get('GOOGLE_API_KEY')
GEMINI_API_KEY = "AIzaSyAjpHA08BUwLhK-tIlORxcB18RAp3541-M"
client = genai.Client(api_key=GEMINI_API_KEY)

new_chat_id = f'{time.time()}'
MODEL_ROLE = 'ai'
AI_AVATAR_ICON = '✨'

# Create a data/ folder if it doesn't already exist
try:
    os.mkdir('data/')
except:
    # data/ folder already exists
    pass

# Load past chats (if available)
try:
    past_chats: dict = joblib.load('data/past_chats_list')
except:
    past_chats = {}

# Sidebar allows a list of past chats
with st.sidebar:
    st.write('# Past Chats')
    if st.session_state.get('chat_id') is None:
        st.session_state.chat_id = st.selectbox(
            label='Pick a past chat',
            options=[new_chat_id] + list(past_chats.keys()),
            format_func=lambda x: past_chats.get(x, 'New Chat'),
            placeholder='_',
        )
    else:
        # This will happen the first time AI response comes in
        st.session_state.chat_id = st.selectbox(
            label='Pick a past chat',
            options=[new_chat_id, st.session_state.chat_id] + list(past_chats.keys()),
            index=1,
            format_func=lambda x: past_chats.get(x, 'New Chat' if x != st.session_state.chat_id else st.session_state.chat_title),
            placeholder='_',
        )

    # Save new chats after a message has been sent to AI
    st.session_state.chat_title = f'ChatSession-{st.session_state.chat_id}'
    

st.write('# Chat with LSAT Tutor')

# Chat history (allows to ask multiple questions)
try:
    st.session_state.messages = joblib.load(
        f'data/{st.session_state.chat_id}-st_messages'
    )
    st.session_state.gemini_history = joblib.load(
        f'data/{st.session_state.chat_id}-gemini_messages'
    )
except:
    st.session_state.messages = []
    st.session_state.gemini_history = []
    print('new_cache made')


st.session_state.chat = client.chats.create(model='gemini-2.0-flash',
                                            config=types.GenerateContentConfig(
                                            tools=[get_model_tools()],
                                            system_instruction=system_instruction),
                                            history=st.session_state.gemini_history
                                               )

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(
        name=message['role'],
        avatar=message.get('avatar'),
    ):
        st.markdown(message['content'])

# React to user input
if prompt := st.chat_input('Your message here...'):
    # Save this as a chat for later
    if st.session_state.chat_id not in past_chats.keys():
        past_chats[st.session_state.chat_id] = st.session_state.chat_title
        joblib.dump(past_chats, 'data/past_chats_list')
    # Display user message in chat message container
    with st.chat_message('user'):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append(
        dict(
            role='user',
            content=prompt,
        )
    )
    ## Send message to AI
    response = st.session_state.chat.send_message_stream(
        prompt,
    )
    # Display assistant response in chat message container
    with st.chat_message(
        name=MODEL_ROLE,
        avatar=AI_AVATAR_ICON,
    ):
        message_placeholder = st.empty()
        full_response = ''
        assistant_response = response
        # Streams in a chunk at a time
        for chunk in response:
            # Simulate stream of chunk
            if chunk.text == None:
                full_response = "No response!! Report to admin!"

            for ch in chunk.text.split(' '):
                full_response += ch + ' '
                time.sleep(0.05)
                # Rewrites with a cursor at end
                message_placeholder.write(full_response + '▌')
        # Write full message with placeholder
        message_placeholder.write(full_response)

            # Add assistant response to chat history
        st.session_state.messages.append(
            dict(
                role=MODEL_ROLE,
                content=full_response,
                avatar=AI_AVATAR_ICON,
            )
        )

    st.session_state.gemini_history = st.session_state.chat.get_history()
    
    # Save to file
    joblib.dump(
        st.session_state.messages,
        f'data/{st.session_state.chat_id}-st_messages',
    )
    joblib.dump(
        st.session_state.gemini_history,
        f'data/{st.session_state.chat_id}-gemini_messages',
    )