Spaces:
Sleeping
Sleeping
File size: 6,153 Bytes
83be74e f571126 83be74e f571126 83be74e f571126 4fd3a9c 83be74e f571126 83be74e 4fd3a9c 83be74e 674a813 77708a2 83be74e f571126 83be74e f571126 77708a2 83be74e 77708a2 83be74e f571126 83be74e f571126 83be74e 4fd3a9c 83be74e f571126 77708a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import time
import os
import joblib
import streamlit as st
from utils.questions_dataset import system_instruction, get_model_tools
from google.genai import types
from google import genai
st.set_page_config(page_title="LSAT Group A", page_icon="📘")
# GOOGLE_API_KEY=os.environ.get('GOOGLE_API_KEY')
GEMINI_API_KEY = "AIzaSyAjpHA08BUwLhK-tIlORxcB18RAp3541-M"
client = genai.Client(api_key=GEMINI_API_KEY)
new_chat_id = f'{time.time()}'
MODEL_ROLE = 'ai'
AI_AVATAR_ICON = '✨'
# Create a data/ folder if it doesn't already exist
try:
os.mkdir('data/')
except:
# data/ folder already exists
pass
# Load past chats (if available)
try:
past_chats: dict = joblib.load('data/past_chats_list')
except:
past_chats = {}
# Sidebar allows a list of past chats
with st.sidebar:
st.write('# Past Chats')
if st.session_state.get('chat_id') is None:
st.session_state.chat_id = st.selectbox(
label='Pick a past chat',
options=[new_chat_id] + list(past_chats.keys()),
format_func=lambda x: past_chats.get(x, 'New Chat'),
placeholder='_',
)
else:
# This will happen the first time AI response comes in
st.session_state.chat_id = st.selectbox(
label='Pick a past chat',
options=[new_chat_id, st.session_state.chat_id] + list(past_chats.keys()),
index=1,
format_func=lambda x: past_chats.get(x, 'New Chat' if x != st.session_state.chat_id else st.session_state.chat_title),
placeholder='_',
)
# Save new chats after a message has been sent to AI
st.session_state.chat_title = f'ChatSession-{st.session_state.chat_id}'
st.title("📘Logical Reasoning: Group A")
next_btn = st.button("Click here when finished")
st.write("Use this AI Tutor to help you understand the concepts. You can ask it to explain the concepts, provide examples, or clarify any doubts you have.")
st.write("Start by sending a hello message!")
# Chat history (allows to ask multiple questions)
try:
st.session_state.messages = joblib.load(
f'data/{st.session_state.chat_id}-st_messages'
)
st.session_state.gemini_history = joblib.load(
f'data/{st.session_state.chat_id}-gemini_messages'
)
except:
st.session_state.messages = []
st.session_state.gemini_history = []
sys_prompt = system_instruction % (
st.session_state.prequiz_df['num_correct'][0],
st.session_state.prequiz_df['num_questions'][0],
st.session_state.prequiz_df['num_correct'][1],
st.session_state.prequiz_df['num_questions'][1],
st.session_state.prequiz_df['num_correct'][2],
st.session_state.prequiz_df['num_questions'][2],
st.session_state.prequiz_df['num_correct'][3],
st.session_state.prequiz_df['num_questions'][3],
st.session_state.prequiz_df['num_correct'][4],
st.session_state.prequiz_df['num_questions'][4],
st.session_state.prequiz_df['num_correct'][5],
st.session_state.prequiz_df['num_questions'][5],
st.session_state.prequiz_df['num_correct'][6],
st.session_state.prequiz_df['num_questions'][6],
st.session_state.prequiz_df['num_correct'][7],
st.session_state.prequiz_df['num_questions'][7],
st.session_state.prequiz_df['num_correct'][8],
st.session_state.prequiz_df['num_questions'][8]
)
st.session_state.chat = client.chats.create(model='gemini-2.0-flash',
config=types.GenerateContentConfig(
tools=[get_model_tools()],
system_instruction=sys_prompt),
history=st.session_state.gemini_history
)
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(
name=message['role'],
avatar=message.get('avatar'),
):
st.markdown(message['content'])
# React to user input
if prompt := st.chat_input('Your message here...'):
# Save this as a chat for later
if st.session_state.chat_id not in past_chats.keys():
past_chats[st.session_state.chat_id] = st.session_state.chat_title
joblib.dump(past_chats, 'data/past_chats_list')
# Display user message in chat message container
with st.chat_message('user'):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append(
dict(
role='user',
content=prompt,
)
)
## Send message to AI
response = st.session_state.chat.send_message_stream(
prompt,
)
# Display assistant response in chat message container
with st.chat_message(
name=MODEL_ROLE,
avatar=AI_AVATAR_ICON,
):
message_placeholder = st.empty()
full_response = ''
assistant_response = response
# Streams in a chunk at a time
for chunk in response:
# Simulate stream of chunk
if chunk.text == None:
chunk.text = "Let's try that one more time so I understand. Please tell me one more time."
for ch in chunk.text.split(' '):
full_response += ch + ' '
time.sleep(0.05)
# Rewrites with a cursor at end
message_placeholder.write(full_response + '▌')
# Write full message with placeholder
message_placeholder.write(full_response)
# Add assistant response to chat history
st.session_state.messages.append(
dict(
role=MODEL_ROLE,
content=full_response,
avatar=AI_AVATAR_ICON,
)
)
st.session_state.gemini_history = st.session_state.chat.get_history()
# Save to file
joblib.dump(
st.session_state.messages,
f'data/{st.session_state.chat_id}-st_messages',
)
joblib.dump(
st.session_state.gemini_history,
f'data/{st.session_state.chat_id}-gemini_messages',
)
if next_btn:
st.switch_page("pages/postquiz.py")
|