Spaces:
Build error
Build error
Create mini.py
Browse files
mini.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import spaces
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
+
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
|
7 |
+
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
8 |
+
from flux.transformer_flux import FluxTransformer2DModel
|
9 |
+
from flux.pipeline_flux_chameleon import FluxPipeline
|
10 |
+
import torch.nn as nn
|
11 |
+
import math
|
12 |
+
import logging
|
13 |
+
import sys
|
14 |
+
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
|
15 |
+
from huggingface_hub import snapshot_download
|
16 |
+
|
17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
18 |
+
|
19 |
+
# Set up logging
|
20 |
+
logging.basicConfig(
|
21 |
+
level=logging.INFO,
|
22 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
23 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
24 |
+
)
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
MODEL_ID = "Djrango/Qwen2vl-Flux"
|
28 |
+
MODEL_CACHE_DIR = "model_cache"
|
29 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
+
DTYPE = torch.bfloat16
|
31 |
+
|
32 |
+
# Aspect ratio options
|
33 |
+
ASPECT_RATIOS = {
|
34 |
+
"1:1": (1024, 1024),
|
35 |
+
"16:9": (1344, 768),
|
36 |
+
"9:16": (768, 1344),
|
37 |
+
"2.4:1": (1536, 640),
|
38 |
+
"3:4": (896, 1152),
|
39 |
+
"4:3": (1152, 896),
|
40 |
+
}
|
41 |
+
|
42 |
+
class Qwen2Connector(nn.Module):
|
43 |
+
def __init__(self, input_dim=3584, output_dim=4096):
|
44 |
+
super().__init__()
|
45 |
+
self.linear = nn.Linear(input_dim, output_dim)
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
return self.linear(x)
|
49 |
+
|
50 |
+
# Download models if not present
|
51 |
+
if not os.path.exists(MODEL_CACHE_DIR):
|
52 |
+
logger.info("Starting model download...")
|
53 |
+
try:
|
54 |
+
snapshot_download(
|
55 |
+
repo_id=MODEL_ID,
|
56 |
+
local_dir=MODEL_CACHE_DIR,
|
57 |
+
local_dir_use_symlinks=False,
|
58 |
+
token=HF_TOKEN
|
59 |
+
)
|
60 |
+
logger.info("Model download completed successfully")
|
61 |
+
except Exception as e:
|
62 |
+
logger.error(f"Error downloading models: {str(e)}")
|
63 |
+
raise
|
64 |
+
|
65 |
+
# Initialize models in global context
|
66 |
+
logger.info("Starting model loading...")
|
67 |
+
|
68 |
+
# Load smaller models to GPU
|
69 |
+
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
|
70 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
71 |
+
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")
|
72 |
+
).to(DTYPE).to(DEVICE)
|
73 |
+
|
74 |
+
text_encoder_two = T5EncoderModel.from_pretrained(
|
75 |
+
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")
|
76 |
+
).to(DTYPE).to(DEVICE)
|
77 |
+
|
78 |
+
tokenizer_two = T5TokenizerFast.from_pretrained(
|
79 |
+
os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2")
|
80 |
+
)
|
81 |
+
|
82 |
+
# Load larger models to CPU
|
83 |
+
vae = AutoencoderKL.from_pretrained(
|
84 |
+
os.path.join(MODEL_CACHE_DIR, "flux/vae")
|
85 |
+
).to(DTYPE).cpu()
|
86 |
+
|
87 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
88 |
+
os.path.join(MODEL_CACHE_DIR, "flux/transformer")
|
89 |
+
).to(DTYPE).cpu()
|
90 |
+
|
91 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
92 |
+
os.path.join(MODEL_CACHE_DIR, "flux/scheduler"),
|
93 |
+
shift=1
|
94 |
+
)
|
95 |
+
|
96 |
+
# Load Qwen2VL to CPU
|
97 |
+
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
|
98 |
+
os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
|
99 |
+
).to(DTYPE).cpu()
|
100 |
+
|
101 |
+
# Load connector and embedder
|
102 |
+
connector = Qwen2Connector().to(DTYPE).cpu()
|
103 |
+
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
|
104 |
+
connector_state = torch.load(connector_path, map_location='cpu')
|
105 |
+
connector_state = {k.replace('module.', ''): v.to(DTYPE) for k, v in connector_state.items()}
|
106 |
+
connector.load_state_dict(connector_state)
|
107 |
+
|
108 |
+
t5_context_embedder = nn.Linear(4096, 3072).to(DTYPE).cpu()
|
109 |
+
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
|
110 |
+
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
|
111 |
+
t5_embedder_state = {k: v.to(DTYPE) for k, v in t5_embedder_state.items()}
|
112 |
+
t5_context_embedder.load_state_dict(t5_embedder_state)
|
113 |
+
|
114 |
+
# Set all models to eval mode
|
115 |
+
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, t5_context_embedder]:
|
116 |
+
model.requires_grad_(False)
|
117 |
+
model.eval()
|
118 |
+
|
119 |
+
logger.info("All models loaded successfully")
|
120 |
+
|
121 |
+
# Initialize processors and pipeline
|
122 |
+
qwen2vl_processor = AutoProcessor.from_pretrained(
|
123 |
+
MODEL_ID,
|
124 |
+
subfolder="qwen2-vl",
|
125 |
+
min_pixels=256*28*28,
|
126 |
+
max_pixels=256*28*28
|
127 |
+
)
|
128 |
+
|
129 |
+
pipeline = FluxPipeline(
|
130 |
+
transformer=transformer,
|
131 |
+
scheduler=scheduler,
|
132 |
+
vae=vae,
|
133 |
+
text_encoder=text_encoder,
|
134 |
+
tokenizer=tokenizer,
|
135 |
+
)
|
136 |
+
|
137 |
+
def process_image(image):
|
138 |
+
"""Process image with Qwen2VL model"""
|
139 |
+
try:
|
140 |
+
# Move Qwen2VL models to GPU
|
141 |
+
logger.info("Moving Qwen2VL models to GPU...")
|
142 |
+
qwen2vl.to(DEVICE)
|
143 |
+
connector.to(DEVICE)
|
144 |
+
|
145 |
+
message = [
|
146 |
+
{
|
147 |
+
"role": "user",
|
148 |
+
"content": [
|
149 |
+
{"type": "image", "image": image},
|
150 |
+
{"type": "text", "text": "Describe this image."},
|
151 |
+
]
|
152 |
+
}
|
153 |
+
]
|
154 |
+
text = qwen2vl_processor.apply_chat_template(
|
155 |
+
message,
|
156 |
+
tokenize=False,
|
157 |
+
add_generation_prompt=True
|
158 |
+
)
|
159 |
+
|
160 |
+
with torch.no_grad():
|
161 |
+
inputs = qwen2vl_processor(
|
162 |
+
text=[text],
|
163 |
+
images=[image],
|
164 |
+
padding=True,
|
165 |
+
return_tensors="pt"
|
166 |
+
).to(DEVICE)
|
167 |
+
|
168 |
+
output_hidden_state, image_token_mask, image_grid_thw = qwen2vl(**inputs)
|
169 |
+
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
|
170 |
+
image_hidden_state = connector(image_hidden_state)
|
171 |
+
|
172 |
+
result = (image_hidden_state.cpu(), image_grid_thw)
|
173 |
+
|
174 |
+
# Move models back to CPU
|
175 |
+
qwen2vl.cpu()
|
176 |
+
connector.cpu()
|
177 |
+
torch.cuda.empty_cache()
|
178 |
+
|
179 |
+
return result
|
180 |
+
|
181 |
+
except Exception as e:
|
182 |
+
logger.error(f"Error in process_image: {str(e)}")
|
183 |
+
raise
|
184 |
+
|
185 |
+
def resize_image(img, max_pixels=1050000):
|
186 |
+
if not isinstance(img, Image.Image):
|
187 |
+
img = Image.fromarray(img)
|
188 |
+
|
189 |
+
width, height = img.size
|
190 |
+
num_pixels = width * height
|
191 |
+
|
192 |
+
if num_pixels > max_pixels:
|
193 |
+
scale = math.sqrt(max_pixels / num_pixels)
|
194 |
+
new_width = int(width * scale)
|
195 |
+
new_height = int(height * scale)
|
196 |
+
new_width = new_width - (new_width % 8)
|
197 |
+
new_height = new_height - (new_height % 8)
|
198 |
+
img = img.resize((new_width, new_height), Image.LANCZOS)
|
199 |
+
|
200 |
+
return img
|
201 |
+
|
202 |
+
def compute_t5_text_embeddings(prompt):
|
203 |
+
"""Compute T5 embeddings for text prompt"""
|
204 |
+
if prompt == "":
|
205 |
+
return None
|
206 |
+
|
207 |
+
text_inputs = tokenizer_two(
|
208 |
+
prompt,
|
209 |
+
padding="max_length",
|
210 |
+
max_length=256,
|
211 |
+
truncation=True,
|
212 |
+
return_tensors="pt"
|
213 |
+
).to(DEVICE)
|
214 |
+
|
215 |
+
prompt_embeds = text_encoder_two(text_inputs.input_ids)[0]
|
216 |
+
prompt_embeds = t5_context_embedder.to(DEVICE)(prompt_embeds)
|
217 |
+
t5_context_embedder.cpu()
|
218 |
+
|
219 |
+
return prompt_embeds
|
220 |
+
|
221 |
+
def compute_text_embeddings(prompt=""):
|
222 |
+
with torch.no_grad():
|
223 |
+
text_inputs = tokenizer(
|
224 |
+
prompt,
|
225 |
+
padding="max_length",
|
226 |
+
max_length=77,
|
227 |
+
truncation=True,
|
228 |
+
return_tensors="pt"
|
229 |
+
).to(DEVICE)
|
230 |
+
|
231 |
+
prompt_embeds = text_encoder(
|
232 |
+
text_inputs.input_ids,
|
233 |
+
output_hidden_states=False
|
234 |
+
)
|
235 |
+
pooled_prompt_embeds = prompt_embeds.pooler_output
|
236 |
+
return pooled_prompt_embeds
|
237 |
+
|
238 |
+
@spaces.GPU(duration=75)
|
239 |
+
def generate(input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1", progress=gr.Progress(track_tqdm=True)):
|
240 |
+
try:
|
241 |
+
logger.info(f"Starting generation with prompt: {prompt}")
|
242 |
+
|
243 |
+
if input_image is None:
|
244 |
+
raise ValueError("No input image provided")
|
245 |
+
|
246 |
+
if seed is not None:
|
247 |
+
torch.manual_seed(seed)
|
248 |
+
logger.info(f"Set random seed to: {seed}")
|
249 |
+
|
250 |
+
# Process image with Qwen2VL
|
251 |
+
logger.info("Processing input image with Qwen2VL...")
|
252 |
+
qwen2_hidden_state, image_grid_thw = process_image(input_image)
|
253 |
+
logger.info("Image processing completed")
|
254 |
+
|
255 |
+
# Compute text embeddings
|
256 |
+
logger.info("Computing text embeddings...")
|
257 |
+
pooled_prompt_embeds = compute_text_embeddings(prompt)
|
258 |
+
t5_prompt_embeds = compute_t5_text_embeddings(prompt)
|
259 |
+
logger.info("Text embeddings computed")
|
260 |
+
|
261 |
+
# Move Transformer and VAE to GPU
|
262 |
+
logger.info("Moving Transformer and VAE to GPU...")
|
263 |
+
transformer.to(DEVICE)
|
264 |
+
vae.to(DEVICE)
|
265 |
+
|
266 |
+
# Update pipeline models
|
267 |
+
pipeline.transformer = transformer
|
268 |
+
pipeline.vae = vae
|
269 |
+
logger.info("Models moved to GPU")
|
270 |
+
|
271 |
+
# Get dimensions
|
272 |
+
width, height = ASPECT_RATIOS[aspect_ratio]
|
273 |
+
logger.info(f"Using dimensions: {width}x{height}")
|
274 |
+
|
275 |
+
try:
|
276 |
+
logger.info("Starting image generation...")
|
277 |
+
output_images = pipeline(
|
278 |
+
prompt_embeds=qwen2_hidden_state.to(DEVICE).repeat(num_images, 1, 1),
|
279 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
280 |
+
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
|
281 |
+
num_inference_steps=num_inference_steps,
|
282 |
+
guidance_scale=guidance_scale,
|
283 |
+
height=height,
|
284 |
+
width=width,
|
285 |
+
).images
|
286 |
+
logger.info("Image generation completed")
|
287 |
+
|
288 |
+
return output_images
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
raise RuntimeError(f"Error generating images: {str(e)}")
|
292 |
+
|
293 |
+
except Exception as e:
|
294 |
+
logger.error(f"Error during generation: {str(e)}")
|
295 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
296 |
+
|
297 |
+
# Create Gradio interface
|
298 |
+
with gr.Blocks(
|
299 |
+
theme=gr.themes.Soft(),
|
300 |
+
css="""
|
301 |
+
.container {
|
302 |
+
max-width: 1200px;
|
303 |
+
margin: auto;
|
304 |
+
}
|
305 |
+
.header {
|
306 |
+
text-align: center;
|
307 |
+
margin: 20px 0 40px 0;
|
308 |
+
padding: 20px;
|
309 |
+
background: #f7f7f7;
|
310 |
+
border-radius: 12px;
|
311 |
+
}
|
312 |
+
.param-row {
|
313 |
+
padding: 10px 0;
|
314 |
+
}
|
315 |
+
footer {
|
316 |
+
margin-top: 40px;
|
317 |
+
padding: 20px;
|
318 |
+
border-top: 1px solid #eee;
|
319 |
+
}
|
320 |
+
"""
|
321 |
+
) as demo:
|
322 |
+
with gr.Column(elem_classes="container"):
|
323 |
+
gr.Markdown(
|
324 |
+
"""# 🎨 Qwen2vl-Flux Image Variation Demo
|
325 |
+
Generate creative variations of your images with optional text guidance"""
|
326 |
+
)
|
327 |
+
|
328 |
+
with gr.Row(equal_height=True):
|
329 |
+
with gr.Column(scale=1):
|
330 |
+
input_image = gr.Image(
|
331 |
+
label="Upload Your Image",
|
332 |
+
type="pil",
|
333 |
+
height=384,
|
334 |
+
sources=["upload", "clipboard"]
|
335 |
+
)
|
336 |
+
prompt = gr.Textbox(
|
337 |
+
label="Text Prompt (Optional)",
|
338 |
+
placeholder="As Long As Possible...",
|
339 |
+
lines=3
|
340 |
+
)
|
341 |
+
with gr.Accordion("Advanced Settings", open=False):
|
342 |
+
with gr.Group():
|
343 |
+
|
344 |
+
with gr.Row(elem_classes="param-row"):
|
345 |
+
guidance = gr.Slider(
|
346 |
+
minimum=1,
|
347 |
+
maximum=10,
|
348 |
+
value=3.5,
|
349 |
+
step=0.5,
|
350 |
+
label="Guidance Scale",
|
351 |
+
info="Higher values follow prompt more closely"
|
352 |
+
)
|
353 |
+
steps = gr.Slider(
|
354 |
+
minimum=1,
|
355 |
+
maximum=50,
|
356 |
+
value=28,
|
357 |
+
step=1,
|
358 |
+
label="Sampling Steps",
|
359 |
+
info="More steps = better quality but slower"
|
360 |
+
)
|
361 |
+
|
362 |
+
with gr.Row(elem_classes="param-row"):
|
363 |
+
num_images = gr.Slider(
|
364 |
+
minimum=1,
|
365 |
+
maximum=4,
|
366 |
+
value=1,
|
367 |
+
step=1,
|
368 |
+
label="Number of Images",
|
369 |
+
info="Generate multiple variations at once"
|
370 |
+
)
|
371 |
+
seed = gr.Number(
|
372 |
+
label="Random Seed",
|
373 |
+
value=None,
|
374 |
+
precision=0,
|
375 |
+
info="Set for reproducible results"
|
376 |
+
)
|
377 |
+
aspect_ratio = gr.Radio(
|
378 |
+
label="Aspect Ratio",
|
379 |
+
choices=["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"],
|
380 |
+
value="1:1",
|
381 |
+
info="Choose aspect ratio for generated images"
|
382 |
+
)
|
383 |
+
|
384 |
+
submit_btn = gr.Button(
|
385 |
+
"🎨 Generate Variations",
|
386 |
+
variant="primary",
|
387 |
+
size="lg"
|
388 |
+
)
|
389 |
+
|
390 |
+
with gr.Column(scale=1):
|
391 |
+
# Output Section
|
392 |
+
output_gallery = gr.Gallery(
|
393 |
+
label="Generated Variations",
|
394 |
+
columns=2,
|
395 |
+
rows=2,
|
396 |
+
height=700,
|
397 |
+
object_fit="contain",
|
398 |
+
show_label=True,
|
399 |
+
allow_preview=True,
|
400 |
+
preview=True
|
401 |
+
)
|
402 |
+
error_message = gr.Textbox(visible=False)
|
403 |
+
|
404 |
+
with gr.Row(elem_classes="footer"):
|
405 |
+
gr.Markdown("""
|
406 |
+
### Tips:
|
407 |
+
- 📸 Upload any image to get started
|
408 |
+
- 💡 Add an optional text prompt to guide the generation
|
409 |
+
- 🎯 Adjust guidance scale to control prompt influence
|
410 |
+
- ⚙️ Increase steps for higher quality
|
411 |
+
- 🎲 Use seeds for reproducible results
|
412 |
+
""")
|
413 |
+
|
414 |
+
submit_btn.click(
|
415 |
+
fn=generate,
|
416 |
+
inputs=[
|
417 |
+
input_image,
|
418 |
+
prompt,
|
419 |
+
guidance,
|
420 |
+
steps,
|
421 |
+
num_images,
|
422 |
+
seed,
|
423 |
+
aspect_ratio
|
424 |
+
],
|
425 |
+
outputs=[output_gallery],
|
426 |
+
show_progress=True
|
427 |
+
)
|
428 |
+
|
429 |
+
# Launch the app
|
430 |
+
if __name__ == "__main__":
|
431 |
+
demo.launch(
|
432 |
+
server_name="0.0.0.0", # Listen on all network interfaces
|
433 |
+
server_port=7860, # Use a specific port
|
434 |
+
share=False, # Disable public URL sharing
|
435 |
+
ssr_mode=False # Fixes bug for some users
|
436 |
+
)
|