Spaces:
Build error
Build error
- app.py +4 -1
- modelmod.py +7 -7
app.py
CHANGED
@@ -29,7 +29,10 @@ if HF_TOKEN: login(token=HF_TOKEN)
|
|
29 |
cp_dir = os.getenv('CHECKPOINT_DIR', 'checkpoints')
|
30 |
snapshot_download("Djrango/Qwen2vl-Flux", local_dir=cp_dir)
|
31 |
hf_hub_download(repo_id="TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline", local_dir=f"{cp_dir}/anyline")
|
32 |
-
|
|
|
|
|
|
|
33 |
snapshot_download("depth-anything/Depth-Anything-V2-Large", local_dir=f"{cp_dir}/depth-anything-v2")
|
34 |
snapshot_download("facebook/sam2-hiera-large", local_dir=f"{cp_dir}/segment-anything-2")
|
35 |
# https://github.com/facebookresearch/sam2/issues/26
|
|
|
29 |
cp_dir = os.getenv('CHECKPOINT_DIR', 'checkpoints')
|
30 |
snapshot_download("Djrango/Qwen2vl-Flux", local_dir=cp_dir)
|
31 |
hf_hub_download(repo_id="TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline", local_dir=f"{cp_dir}/anyline")
|
32 |
+
try:
|
33 |
+
shutil.move("checkpoints/anyline/Anyline/MTEED.pth", f"{cp_dir}/anyline")
|
34 |
+
except:
|
35 |
+
print("anyline fail")
|
36 |
snapshot_download("depth-anything/Depth-Anything-V2-Large", local_dir=f"{cp_dir}/depth-anything-v2")
|
37 |
snapshot_download("facebook/sam2-hiera-large", local_dir=f"{cp_dir}/segment-anything-2")
|
38 |
# https://github.com/facebookresearch/sam2/issues/26
|
modelmod.py
CHANGED
@@ -122,10 +122,10 @@ class FluxModel:
|
|
122 |
self.connector.to(self.dtype).to(self.device)
|
123 |
|
124 |
# Text encoders initialization
|
125 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(MODEL_PATHS['flux'], subfolder="tokenizer")
|
126 |
-
self.text_encoder = CLIPTextModel.from_pretrained(MODEL_PATHS['flux'], subfolder="text_encoder")
|
127 |
-
self.text_encoder_two = T5EncoderModel.from_pretrained(MODEL_PATHS['flux'], subfolder="text_encoder_2", **self.qkwargs)
|
128 |
-
self.tokenizer_two = T5TokenizerFast.from_pretrained(MODEL_PATHS['flux'], subfolder="tokenizer_2")
|
129 |
|
130 |
self.text_encoder.requires_grad_(False).to(self.dtype).to(self.device)
|
131 |
#self.text_encoder_two.requires_grad_(False).to(self.dtype).to(self.device)
|
@@ -139,9 +139,9 @@ class FluxModel:
|
|
139 |
self.t5_context_embedder.to(self.dtype).to(self.device)
|
140 |
|
141 |
# Basic components
|
142 |
-
self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(MODEL_PATHS['flux'], subfolder="scheduler", shift=1)
|
143 |
-
self.vae = AutoencoderKL.from_pretrained(MODEL_PATHS['flux'], subfolder="vae")
|
144 |
-
self.transformer = FluxTransformer2DModel.from_pretrained(MODEL_PATHS['flux'], subfolder="transformer", **self.qkwargs)
|
145 |
|
146 |
self.vae.requires_grad_(False).to(self.dtype).to(self.device)
|
147 |
#self.transformer.requires_grad_(False).to(self.dtype).to(self.device)
|
|
|
122 |
self.connector.to(self.dtype).to(self.device)
|
123 |
|
124 |
# Text encoders initialization
|
125 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(MODEL_PATHS['flux'], subfolder="tokenizer", token=HF_TOKEN)
|
126 |
+
self.text_encoder = CLIPTextModel.from_pretrained(MODEL_PATHS['flux'], subfolder="text_encoder", token=HF_TOKEN)
|
127 |
+
self.text_encoder_two = T5EncoderModel.from_pretrained(MODEL_PATHS['flux'], subfolder="text_encoder_2", token=HF_TOKEN, **self.qkwargs)
|
128 |
+
self.tokenizer_two = T5TokenizerFast.from_pretrained(MODEL_PATHS['flux'], subfolder="tokenizer_2", token=HF_TOKEN)
|
129 |
|
130 |
self.text_encoder.requires_grad_(False).to(self.dtype).to(self.device)
|
131 |
#self.text_encoder_two.requires_grad_(False).to(self.dtype).to(self.device)
|
|
|
139 |
self.t5_context_embedder.to(self.dtype).to(self.device)
|
140 |
|
141 |
# Basic components
|
142 |
+
self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(MODEL_PATHS['flux'], subfolder="scheduler", shift=1, token=HF_TOKEN)
|
143 |
+
self.vae = AutoencoderKL.from_pretrained(MODEL_PATHS['flux'], subfolder="vae", token=HF_TOKEN)
|
144 |
+
self.transformer = FluxTransformer2DModel.from_pretrained(MODEL_PATHS['flux'], subfolder="transformer", token=HF_TOKEN, **self.qkwargs)
|
145 |
|
146 |
self.vae.requires_grad_(False).to(self.dtype).to(self.device)
|
147 |
#self.transformer.requires_grad_(False).to(self.dtype).to(self.device)
|