File size: 9,144 Bytes
6c0d568 a4f8a15 6c0d568 1eecd17 eee8ee3 c2d983a 6c0d568 858dae2 6c0d568 ee9e061 db5e884 eee8ee3 4b76a05 eee8ee3 4d3675e eee8ee3 3b79011 eee8ee3 858dae2 935805a 3b79011 935805a 3b79011 935805a eee8ee3 aafe80a 858dae2 6c0d568 db5e884 6c0d568 db5e884 6c0d568 ee9e061 6c0d568 0c327c7 858dae2 6c0d568 858dae2 6c0d568 0c327c7 858dae2 5e4c885 858dae2 5e4c885 0c327c7 5e4c885 0c327c7 6c0d568 db5e884 6c0d568 db5e884 8965f65 ee9e061 858dae2 ee9e061 858dae2 ee9e061 6c0d568 eee8ee3 a37e840 6c0d568 01bbb6c 6c0d568 db5e884 858dae2 0c327c7 6c0d568 eee8ee3 6c0d568 858dae2 eee8ee3 935805a 858dae2 51c3be9 8d48719 db5e884 53a4ccf db5e884 53a4ccf 935805a e6603c1 51c3be9 858dae2 0c327c7 2db5059 858dae2 51c3be9 0c327c7 858dae2 0c327c7 6c0d568 858dae2 db5e884 858dae2 6c0d568 db5e884 e8b186a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import os
import torch
import numpy as np
import cv2
import huggingface_hub
import matplotlib.pyplot as plt
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
# Remove all CUDA-specific configurations
torch.autocast(device_type="cpu", dtype=torch.float32).__enter__()
def preprocess_image(image):
return image, gr.State([]), gr.State([]), image
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.value.append(evt.index)
print(f"TRACKING POINT: {tracking_points.value}")
if point_type == "include":
trackings_input_label.value.append(1)
elif point_type == "exclude":
trackings_input_label.value.append(0)
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
fraction = 0.02
radius = int(fraction * min(w, h))
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points.value):
if trackings_input_label.value[index] == 1:
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trackings_input_label, selected_point_map
def show_mask(mask, ax, random_color=False, borders=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
contours, _= cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
combined_images = []
mask_images = []
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders)
plt.axis('off')
combined_filename = f"combined_image_{i+1}.jpg"
plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
combined_images.append(combined_filename)
plt.close()
mask_image = np.zeros_like(image, dtype=np.uint8)
mask_layer = (mask > 0).astype(np.uint8) * 255
for c in range(3):
mask_image[:, :, c] = mask_layer
mask_filename = f"mask_image_{i+1}.png"
Image.fromarray(mask_image).save(mask_filename)
mask_images.append(mask_filename)
return combined_images, mask_images
def expand_contract_mask(mask, px, expand=True):
kernel = np.ones((px, px), np.uint8)
if expand:
return cv2.dilate(mask, kernel, iterations=1)
else:
return cv2.erode(mask, kernel, iterations=1)
def feather_mask(mask, feather_size=10):
feathered_mask = mask.copy()
Feathered_region = mask > 0
Feathered_region = cv2.dilate(Feathered_region.astype(np.uint8), np.ones((feather_size, feather_size), np.uint8), iterations=1)
Feathered_region = Feathered_region & (~mask.astype(bool))
for i in range(1, feather_size + 1):
weight = i / (feather_size + 1)
feathered_mask[Feathered_region] = feathered_mask[Feathered_region] * (1 - weight) + weight
return feathered_mask
def process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size):
if expand_contract_px > 0:
mask = expand_contract_mask(mask, expand_contract_px, expand)
if feathering_enabled:
mask = feather_mask(mask, feather_size)
return mask
def sam_process(input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size):
image = Image.open(input_image)
image = np.array(image.convert("RGB"))
sam21_hfmap = {
"tiny": "facebook/sam2.1-hiera-tiny",
"small": "facebook/sam2.1-hiera-small",
"base-plus": "facebook/sam2.1-hiera-base-plus",
"large": "facebook/sam2.1-hiera-large",
}
# sam2_checkpoint, model_cfg = checkpoint_map[checkpoint]
# Use CPU for both model and computations
# sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu")
predictor = SAM2ImagePredictor.from_pretrained(sam21_hfmap[checkpoint], device="cpu")
# predictor = SAM2ImagePredictor(sam2_model)
predictor.set_image(image)
input_point = np.array(tracking_points.value)
input_label = np.array(trackings_input_label.value)
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
sorted_ind = np.argsort(scores)[::-1]
masks = masks[sorted_ind]
scores = scores[sorted_ind]
processed_masks = []
for mask in masks:
processed_mask = process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size)
processed_masks.append(processed_mask)
results, mask_results = show_masks(image, processed_masks, scores,
point_coords=input_point,
input_labels=input_label,
borders=True)
return results[0], mask_results[0]
with gr.Blocks() as demo:
first_frame_path = gr.State()
tracking_points = gr.State([])
trackings_input_label = gr.State([])
with gr.Column():
gr.Markdown("# SAM2 Image Predictor (CPU Version)")
gr.Markdown("This version runs entirely on CPU")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
points_map = gr.Image(label="points map", type="filepath", interactive=True)
with gr.Row():
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
clear_points_btn = gr.Button("Clear Points")
checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="base-plus")
with gr.Row():
expand_contract_px = gr.Slider(minimum=0, maximum=50, value=0, label="Expand/Contract (pixels)")
expand = gr.Radio(["Expand", "Contract"], value="Expand", label="Action")
with gr.Row():
feathering_enabled = gr.Checkbox(value=False, label="Enable Feathering")
feather_size = gr.Slider(minimum=1, maximum=50, value=10, label="Feathering Size", visible=False)
submit_btn = gr.Button("Submit")
with gr.Column():
output_result = gr.Image()
output_result_mask = gr.Image()
clear_points_btn.click(
fn=preprocess_image,
inputs=input_image,
outputs=[first_frame_path, tracking_points, trackings_input_label, points_map],
queue=False
)
points_map.upload(
fn=preprocess_image,
inputs=[points_map],
outputs=[first_frame_path, tracking_points, trackings_input_label, input_image],
queue=False
)
points_map.select(
fn=get_point,
inputs=[point_type, tracking_points, trackings_input_label, first_frame_path],
outputs=[tracking_points, trackings_input_label, points_map],
queue=False
)
submit_btn.click(
fn=sam_process,
inputs=[input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size],
outputs=[output_result, output_result_mask]
)
feathering_enabled.change(
fn=lambda enabled: gr.update(visible=enabled),
inputs=[feathering_enabled],
outputs=[feather_size]
)
demo.launch(show_api=False, show_error=True) |