Spaces:
Runtime error
Runtime error
import spaces | |
import os | |
import gradio as gr | |
import torch | |
import numpy as np | |
import cv2 | |
import safetensors | |
from PIL import Image, ImageDraw | |
from diffusers import AutoencoderKL | |
from diffusers.utils import load_image, check_min_version | |
from controlnet_flux import FluxControlNetModel | |
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline | |
from transformers import AutoProcessor, pipeline, AutoModelForMaskGeneration | |
from diffusers.models.attention_processor import Attention | |
from dataclasses import dataclass | |
from typing import Any, List, Dict, Optional, Union, Tuple | |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, FluxTransformer2DModel, FluxPipeline | |
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel | |
# Ensure that the minimal version of diffusers is installed | |
check_min_version("0.30.2") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1' | |
dtype = torch.bfloat16 | |
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", | |
subfolder="vae", | |
torch_dtype=dtype, | |
use_safetensors=True, | |
token=HF_TOKEN | |
).to("cuda") | |
# quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True) | |
# transformer_8bit = FluxTransformer2DModel.from_pretrained( | |
# "black-forest-labs/FLUX.1-dev", | |
# subfolder="transformer", | |
# quantization_config=quant_config, | |
# torch_dtype=dtype, | |
# token=HF_TOKEN | |
# ) | |
# Quantize the text encoder to 8-bit precision | |
quant_config = BitsAndBytesConfig(load_in_8bit=True) | |
text_encoder_8bit = T5EncoderModel.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
subfolder="text_encoder_2", | |
quantization_config=quant_config, | |
torch_dtype=torch.float16, | |
token=HF_TOKEN | |
) | |
# # Load necessary models and processors | |
# controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16) | |
# pipe = FluxControlNetInpaintingPipeline.from_pretrained( | |
# "LPX55/FLUX.1-merged_uncensored", | |
# vae=good_vae, | |
# # transformer=transformer_8bit, | |
# controlnet=controlnet, | |
# torch_dtype=dtype, | |
# use_safetensors=True, | |
# token=HF_TOKEN | |
# ).to("cuda") | |
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16) | |
pipe = FluxControlNetInpaintingPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
controlnet=controlnet, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe.transformer.to(torch.bfloat16) | |
pipe.controlnet.to(torch.bfloat16) | |
pipe.text_encoder_2 = text_encoder_8bit | |
base_attn_procs = pipe.transformer.attn_processors.copy() | |
detector_id = "IDEA-Research/grounding-dino-tiny" | |
segmenter_id = "facebook/sam-vit-base" | |
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).cuda() | |
segment_processor = AutoProcessor.from_pretrained(segmenter_id) | |
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=torch.device("cuda")) | |
class BoundingBox: | |
xmin: int | |
ymin: int | |
xmax: int | |
ymax: int | |
def xyxy(self) -> List[float]: | |
return [self.xmin, self.ymin, self.xmax, self.ymax] | |
class DetectionResult: | |
score: float | |
label: str | |
box: BoundingBox | |
mask: Optional[np.array] = None | |
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult': | |
return cls(score=detection_dict['score'], | |
label=detection_dict['label'], | |
box=BoundingBox(xmin=detection_dict['box']['xmin'], | |
ymin=detection_dict['box']['ymin'], | |
xmax=detection_dict['box']['xmax'], | |
ymax=detection_dict['box']['ymax'])) | |
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]: | |
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
if not contours: | |
return [] | |
largest_contour = max(contours, key=cv2.contourArea) | |
polygon = largest_contour.reshape(-1, 2).tolist() | |
return polygon | |
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray: | |
mask = np.zeros(image_shape, dtype=np.uint8) | |
pts = np.array(polygon, dtype=np.int32) | |
cv2.fillPoly(mask, [pts], color=(255,)) | |
return mask | |
def get_boxes(results: List[DetectionResult]) -> List[List[List[float]]]: | |
boxes = [] | |
for result in results: | |
xyxy = result.box.xyxy | |
boxes.append(xyxy) | |
return [boxes] | |
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]: | |
masks = masks.cpu().float() | |
masks = masks.permute(0, 2, 3, 1) | |
masks = masks.mean(axis=-1) | |
masks = (masks > 0).int() | |
masks = masks.numpy().astype(np.uint8) | |
masks = list(masks) | |
if polygon_refinement: | |
for idx, mask in enumerate(masks): | |
shape = mask.shape | |
polygon = mask_to_polygon(mask) | |
mask = polygon_to_mask(polygon, shape) | |
masks[idx] = mask | |
return masks | |
def detect( | |
object_detector, | |
image: Image.Image, | |
labels: List[str], | |
threshold: float = 0.3, | |
detector_id: Optional[str] = None | |
) -> List[Dict[str, Any]]: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
detector_id = detector_id if detector_id is not None else detector_id | |
labels = [label if label.endswith(".") else label+"." for label in labels] | |
results = object_detector(image, candidate_labels=labels, threshold=threshold) | |
results = [DetectionResult.from_dict(result) for result in results] | |
return results | |
def segment( | |
segmentator, | |
processor, | |
image_tensor: torch.Tensor, | |
detection_results: List[Dict[str, Any]], | |
polygon_refinement: bool = False | |
) -> List[DetectionResult]: | |
device = image_tensor.device | |
boxes = get_boxes(detection_results) | |
# Convert image tensor to float32 for processing | |
image_tensor_float32 = image_tensor.to(torch.float32) | |
inputs = processor(images=image_tensor_float32, input_boxes=boxes, return_tensors="pt", torch_dtype=torch.float32) | |
# Process inputs and get outputs | |
outputs = segmentator(**inputs) | |
# Convert masks to bfloat16 if needed | |
masks = outputs.pred_masks.to(torch.bfloat16) | |
masks = processor.post_process_masks( | |
masks=masks, | |
original_sizes=inputs.original_sizes, | |
reshaped_input_sizes=inputs.reshaped_input_sizes | |
)[0] | |
masks = refine_masks(masks, polygon_refinement) | |
for detection_result, mask in zip(detection_results, masks): | |
detection_result.mask = mask | |
return detection_results | |
def grounded_segmentation( | |
detect_pipeline, | |
segmentator, | |
segment_processor, | |
image: Union[Image.Image, str], | |
labels: List[str], | |
threshold: float = 0.3, | |
polygon_refinement: bool = False, | |
detector_id: Optional[str] = None, | |
segmenter_id: Optional[str] = None | |
) -> Tuple[np.ndarray, List[DetectionResult]]: | |
if isinstance(image, str): | |
image = load_image(image) | |
# Convert image to tensor and to float32 for processing | |
image_tensor = torch.tensor(np.array(image), dtype=torch.float32, device="cuda").permute(2, 0, 1).unsqueeze(0) / 255.0 | |
detections = detect(detect_pipeline, image, labels, threshold, detector_id) | |
detections = segment(segmentator, segment_processor, image_tensor, detections, polygon_refinement) | |
# Convert image tensor back to numpy array for return | |
image_array = image_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255 | |
image_array = image_array.astype(np.uint8) | |
return image_array, detections | |
class CustomFluxAttnProcessor2_0: | |
def __init__(self, height=44, width=88, attn_enforce=1.0): | |
if not hasattr(torch.nn.functional, "scaled_dot_product_attention"): | |
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.height = height | |
self.width = width | |
self.num_pixels = height * width | |
self.step = 0 | |
self.attn_enforce = attn_enforce | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
) -> torch.FloatTensor: | |
self.step += 1 | |
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
if encoder_hidden_states is not None: | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
if attn.norm_added_k is not None: | |
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
if image_rotary_emb is not None: | |
from diffusers.models.embeddings import apply_rotary_emb | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
if self.attn_enforce != 1.0: | |
attn_probs = (torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale).softmax(dim=-1) | |
img_attn_probs = attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] | |
img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.height, self.width, self.height, self.width)) | |
img_attn_probs[:, :, :, self.width//2:, :, :self.width//2] *= self.attn_enforce | |
img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.num_pixels, self.num_pixels)) | |
attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] = img_attn_probs | |
hidden_states = torch.einsum('bhqk,bhkd->bhqd', attn_probs, value) | |
else: | |
hidden_states = torch.nn.functional.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
if encoder_hidden_states is not None: | |
encoder_hidden_states, hidden_states = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1] :], | |
) | |
hidden_states = attn.to_out[0](hidden_states) | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |
else: | |
return hidden_states | |
def segment_image(image, object_name): | |
image_array, detections = grounded_segmentation( | |
object_detector, | |
segmentator, | |
segment_processor, | |
image=image, | |
labels=object_name, | |
threshold=0.3, | |
polygon_refinement=True, | |
) | |
segment_result = image_array * np.expand_dims((255 - detections[0].mask) / 255, axis=-1) | |
segmented_image = Image.fromarray(segment_result.astype(np.uint8)) | |
return segmented_image | |
def make_diptych(image): | |
ref_image = np.array(image) | |
ref_image = np.concatenate([ref_image, np.zeros_like(ref_image)], axis=1) | |
ref_image = Image.fromarray(ref_image) | |
return ref_image | |
def inpaint_image(image, prompt, object_name): | |
width = 512 | |
height = 512 | |
size = (width * 2, height) | |
diptych_text_prompt = f"A diptych with two side-by-side images of same {object_name}. On the left, a photo of {object_name}. On the right, {prompt}" | |
reference_image = image.resize((width, height)).convert("RGB") | |
segmented_image = segment_image(reference_image, object_name) | |
mask_image = np.concatenate([np.zeros((height, width, 3)), np.ones((height, width, 3))*255], axis=1) | |
mask_image = Image.fromarray(mask_image.astype(np.uint8)) | |
diptych_image_prompt = make_diptych(segmented_image) | |
base_attn_procs = pipe.transformer.attn_processors.copy() | |
new_attn_procs = base_attn_procs.copy() | |
for i, (k, v) in enumerate(new_attn_procs.items()): | |
new_attn_procs[k] = CustomFluxAttnProcessor2_0(height=height // 16, width=width // 16 * 2, attn_enforce=1.3) | |
pipe.transformer.set_attn_processor(new_attn_procs) | |
generator = torch.Generator(device="cuda").manual_seed(42) | |
with torch.no_grad(): | |
result = pipe( | |
prompt=diptych_text_prompt, | |
height=size[1], | |
width=size[0], | |
control_image=diptych_image_prompt, | |
control_mask=mask_image, | |
num_inference_steps=20, | |
generator=generator, | |
controlnet_conditioning_scale=0.95, | |
guidance_scale=3.5, | |
negative_prompt="", | |
true_guidance_scale=3.5 | |
).images[0] | |
result = result.crop((width, 0, width*2, height)) | |
torch.cuda.empty_cache() | |
return result, diptych_image_prompt | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=inpaint_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(lines=3, value="replicate this {subject_name} exactly but as a photo of the {subject_name} surfing on the beach", label="Prompt"), | |
gr.Textbox(lines=1, value="bear plushie", label="Subject Name") | |
], | |
outputs=[ | |
gr.Image(type="pil", label="Inpainted Image"), | |
gr.Image(type="pil", label="Diptych Image") | |
], | |
title="FLUX Inpainting with Diptych Prompting", | |
description="Upload an image, specify a prompt, and provide the subject name. The app will automatically generate the inpainted image." | |
) | |
# Launch the app | |
iface.launch() |