LPX55's picture
refactor: revert back to old method
ae7e181
import spaces
import os
import gradio as gr
import torch
import numpy as np
import cv2
import safetensors
from PIL import Image, ImageDraw
from diffusers import AutoencoderKL
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
from transformers import AutoProcessor, pipeline, AutoModelForMaskGeneration
from diffusers.models.attention_processor import Attention
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, FluxTransformer2DModel, FluxPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
# Ensure that the minimal version of diffusers is installed
check_min_version("0.30.2")
HF_TOKEN = os.getenv("HF_TOKEN")
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
dtype = torch.bfloat16
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev",
subfolder="vae",
torch_dtype=dtype,
use_safetensors=True,
token=HF_TOKEN
).to("cuda")
# quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
# transformer_8bit = FluxTransformer2DModel.from_pretrained(
# "black-forest-labs/FLUX.1-dev",
# subfolder="transformer",
# quantization_config=quant_config,
# torch_dtype=dtype,
# token=HF_TOKEN
# )
# Quantize the text encoder to 8-bit precision
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="text_encoder_2",
quantization_config=quant_config,
torch_dtype=torch.float16,
token=HF_TOKEN
)
# # Load necessary models and processors
# controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
# pipe = FluxControlNetInpaintingPipeline.from_pretrained(
# "LPX55/FLUX.1-merged_uncensored",
# vae=good_vae,
# # transformer=transformer_8bit,
# controlnet=controlnet,
# torch_dtype=dtype,
# use_safetensors=True,
# token=HF_TOKEN
# ).to("cuda")
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
controlnet=controlnet,
torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)
pipe.text_encoder_2 = text_encoder_8bit
base_attn_procs = pipe.transformer.attn_processors.copy()
detector_id = "IDEA-Research/grounding-dino-tiny"
segmenter_id = "facebook/sam-vit-base"
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).cuda()
segment_processor = AutoProcessor.from_pretrained(segmenter_id)
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=torch.device("cuda"))
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.array] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']))
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return []
largest_contour = max(contours, key=cv2.contourArea)
polygon = largest_contour.reshape(-1, 2).tolist()
return polygon
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
mask = np.zeros(image_shape, dtype=np.uint8)
pts = np.array(polygon, dtype=np.int32)
cv2.fillPoly(mask, [pts], color=(255,))
return mask
def get_boxes(results: List[DetectionResult]) -> List[List[List[float]]]:
boxes = []
for result in results:
xyxy = result.box.xyxy
boxes.append(xyxy)
return [boxes]
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
masks = masks.cpu().float()
masks = masks.permute(0, 2, 3, 1)
masks = masks.mean(axis=-1)
masks = (masks > 0).int()
masks = masks.numpy().astype(np.uint8)
masks = list(masks)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
mask = polygon_to_mask(polygon, shape)
masks[idx] = mask
return masks
def detect(
object_detector,
image: Image.Image,
labels: List[str],
threshold: float = 0.3,
detector_id: Optional[str] = None
) -> List[Dict[str, Any]]:
device = "cuda" if torch.cuda.is_available() else "cpu"
detector_id = detector_id if detector_id is not None else detector_id
labels = [label if label.endswith(".") else label+"." for label in labels]
results = object_detector(image, candidate_labels=labels, threshold=threshold)
results = [DetectionResult.from_dict(result) for result in results]
return results
def segment(
segmentator,
processor,
image_tensor: torch.Tensor,
detection_results: List[Dict[str, Any]],
polygon_refinement: bool = False
) -> List[DetectionResult]:
device = image_tensor.device
boxes = get_boxes(detection_results)
# Convert image tensor to float32 for processing
image_tensor_float32 = image_tensor.to(torch.float32)
inputs = processor(images=image_tensor_float32, input_boxes=boxes, return_tensors="pt", torch_dtype=torch.float32)
# Process inputs and get outputs
outputs = segmentator(**inputs)
# Convert masks to bfloat16 if needed
masks = outputs.pred_masks.to(torch.bfloat16)
masks = processor.post_process_masks(
masks=masks,
original_sizes=inputs.original_sizes,
reshaped_input_sizes=inputs.reshaped_input_sizes
)[0]
masks = refine_masks(masks, polygon_refinement)
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(
detect_pipeline,
segmentator,
segment_processor,
image: Union[Image.Image, str],
labels: List[str],
threshold: float = 0.3,
polygon_refinement: bool = False,
detector_id: Optional[str] = None,
segmenter_id: Optional[str] = None
) -> Tuple[np.ndarray, List[DetectionResult]]:
if isinstance(image, str):
image = load_image(image)
# Convert image to tensor and to float32 for processing
image_tensor = torch.tensor(np.array(image), dtype=torch.float32, device="cuda").permute(2, 0, 1).unsqueeze(0) / 255.0
detections = detect(detect_pipeline, image, labels, threshold, detector_id)
detections = segment(segmentator, segment_processor, image_tensor, detections, polygon_refinement)
# Convert image tensor back to numpy array for return
image_array = image_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255
image_array = image_array.astype(np.uint8)
return image_array, detections
class CustomFluxAttnProcessor2_0:
def __init__(self, height=44, width=88, attn_enforce=1.0):
if not hasattr(torch.nn.functional, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.height = height
self.width = width
self.num_pixels = height * width
self.step = 0
self.attn_enforce = attn_enforce
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
self.step += 1
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if encoder_hidden_states is not None:
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
if self.attn_enforce != 1.0:
attn_probs = (torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale).softmax(dim=-1)
img_attn_probs = attn_probs[:, :, -self.num_pixels:, -self.num_pixels:]
img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.height, self.width, self.height, self.width))
img_attn_probs[:, :, :, self.width//2:, :, :self.width//2] *= self.attn_enforce
img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.num_pixels, self.num_pixels))
attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] = img_attn_probs
hidden_states = torch.einsum('bhqk,bhkd->bhqd', attn_probs, value)
else:
hidden_states = torch.nn.functional.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
def segment_image(image, object_name):
image_array, detections = grounded_segmentation(
object_detector,
segmentator,
segment_processor,
image=image,
labels=object_name,
threshold=0.3,
polygon_refinement=True,
)
segment_result = image_array * np.expand_dims((255 - detections[0].mask) / 255, axis=-1)
segmented_image = Image.fromarray(segment_result.astype(np.uint8))
return segmented_image
def make_diptych(image):
ref_image = np.array(image)
ref_image = np.concatenate([ref_image, np.zeros_like(ref_image)], axis=1)
ref_image = Image.fromarray(ref_image)
return ref_image
@spaces.GPU()
def inpaint_image(image, prompt, object_name):
width = 512
height = 512
size = (width * 2, height)
diptych_text_prompt = f"A diptych with two side-by-side images of same {object_name}. On the left, a photo of {object_name}. On the right, {prompt}"
reference_image = image.resize((width, height)).convert("RGB")
segmented_image = segment_image(reference_image, object_name)
mask_image = np.concatenate([np.zeros((height, width, 3)), np.ones((height, width, 3))*255], axis=1)
mask_image = Image.fromarray(mask_image.astype(np.uint8))
diptych_image_prompt = make_diptych(segmented_image)
base_attn_procs = pipe.transformer.attn_processors.copy()
new_attn_procs = base_attn_procs.copy()
for i, (k, v) in enumerate(new_attn_procs.items()):
new_attn_procs[k] = CustomFluxAttnProcessor2_0(height=height // 16, width=width // 16 * 2, attn_enforce=1.3)
pipe.transformer.set_attn_processor(new_attn_procs)
generator = torch.Generator(device="cuda").manual_seed(42)
with torch.no_grad():
result = pipe(
prompt=diptych_text_prompt,
height=size[1],
width=size[0],
control_image=diptych_image_prompt,
control_mask=mask_image,
num_inference_steps=20,
generator=generator,
controlnet_conditioning_scale=0.95,
guidance_scale=3.5,
negative_prompt="",
true_guidance_scale=3.5
).images[0]
result = result.crop((width, 0, width*2, height))
torch.cuda.empty_cache()
return result, diptych_image_prompt
# Create Gradio interface
iface = gr.Interface(
fn=inpaint_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(lines=3, value="replicate this {subject_name} exactly but as a photo of the {subject_name} surfing on the beach", label="Prompt"),
gr.Textbox(lines=1, value="bear plushie", label="Subject Name")
],
outputs=[
gr.Image(type="pil", label="Inpainted Image"),
gr.Image(type="pil", label="Diptych Image")
],
title="FLUX Inpainting with Diptych Prompting",
description="Upload an image, specify a prompt, and provide the subject name. The app will automatically generate the inpainted image."
)
# Launch the app
iface.launch()