Upload evaluation_example.ipynb
Browse files- evaluation_example.ipynb +316 -0
evaluation_example.ipynb
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from tqdm.auto import tqdm\n",
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"import time\n",
|
12 |
+
"\n",
|
13 |
+
"from langchain.document_loaders import PyMuPDFLoader\n",
|
14 |
+
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
15 |
+
"\n",
|
16 |
+
"pd.set_option(\"display.max_colwidth\", None)\n",
|
17 |
+
"\n",
|
18 |
+
"# Set ChatMistralAI API KEY\n",
|
19 |
+
"# e.g., export MISTRAL_API_KEY==your_api_key_here\n",
|
20 |
+
"# or save apy key in .env file\n",
|
21 |
+
"from dotenv import load_dotenv\n",
|
22 |
+
"load_dotenv()"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": null,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"# Load pdf file\n",
|
32 |
+
"filepath = \"data/documents/Brandt et al_2024_Kadi_info_page.pdf\"\n",
|
33 |
+
"loader_module = PyMuPDFLoader\n",
|
34 |
+
"loader = loader_module(filepath)\n",
|
35 |
+
"document = loader.load()"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"# Split docs into chunks\n",
|
45 |
+
"text_splitter = RecursiveCharacterTextSplitter(\n",
|
46 |
+
" chunk_size=2000,\n",
|
47 |
+
" chunk_overlap=200,\n",
|
48 |
+
" add_start_index=True,\n",
|
49 |
+
" separators=[\"\\n\\n\", \"\\n\", \".\", \" \", \"\"],\n",
|
50 |
+
")\n",
|
51 |
+
"\n",
|
52 |
+
"docs_processed = []\n",
|
53 |
+
"for doc in document:\n",
|
54 |
+
" docs_processed += text_splitter.split_documents([doc])\n",
|
55 |
+
"\n"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"# Create LLM, here we use MistralAI\n",
|
65 |
+
"from langchain_mistralai.chat_models import ChatMistralAI\n",
|
66 |
+
"\n",
|
67 |
+
"llm = ChatMistralAI(\n",
|
68 |
+
" model=\"mistral-large-latest\"\n",
|
69 |
+
")\n",
|
70 |
+
"\n",
|
71 |
+
"llm.invoke(\"hello\") # test llm"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": null,
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"QA_generation_prompt = \"\"\"\n",
|
81 |
+
"Your task is to write a factoid question and an answer given a context.\n",
|
82 |
+
"Your factoid question should be answerable with a specific, concise piece of factual information from the context.\n",
|
83 |
+
"Your factoid question should be formulated in the same style as questions users could ask in a search engine. Users are usually scientific researchers in the field of materials science.\n",
|
84 |
+
"This means that your factoid question MUST NOT mention something like \"according to the passage\" or \"context\".\n",
|
85 |
+
"Please ask the specific question instead of the general question, like 'What is the key information in the given paragraph?'.\n",
|
86 |
+
"\n",
|
87 |
+
"Provide your answer as follows:\n",
|
88 |
+
"\n",
|
89 |
+
"Output:::\n",
|
90 |
+
"Factoid question: (your factoid question)\n",
|
91 |
+
"Answer: (your answer to the factoid question)\n",
|
92 |
+
"\n",
|
93 |
+
"Now here is the context.\n",
|
94 |
+
"\n",
|
95 |
+
"Context: {context}\\n\n",
|
96 |
+
"Output:::\"\"\"\n",
|
97 |
+
"\n",
|
98 |
+
"# Or\n",
|
99 |
+
"# Ref: https://mlflow.org/docs/latest/llms/rag/notebooks/question-generation-retrieval-evaluation.html\n",
|
100 |
+
"# QA_generation_prompt = \"\"\"\n",
|
101 |
+
"# Please generate a question asking for the key information in the given paragraph.\n",
|
102 |
+
"# Also answer the questions using the information in the given paragraph.\n",
|
103 |
+
"# Please ask the specific question instead of the general question, like\n",
|
104 |
+
"# 'What is the key information in the given paragraph?'.\n",
|
105 |
+
"# Please generate the answer using as much information as possible.\n",
|
106 |
+
"# If you are unable to answer it, please generate the answer as 'I don't know.'\n",
|
107 |
+
"\n",
|
108 |
+
"# Provide your answer as follows:\n",
|
109 |
+
"\n",
|
110 |
+
"# Output:::\n",
|
111 |
+
"# Factoid question: (your factoid question)\n",
|
112 |
+
"# Answer: (your answer to the factoid question)\n",
|
113 |
+
"\n",
|
114 |
+
"# Now here is the context.\n",
|
115 |
+
"\n",
|
116 |
+
"# Context: {context}\\n\n",
|
117 |
+
"# Output:::\"\"\""
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": null,
|
123 |
+
"metadata": {},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"# Generate QA pairs\n",
|
127 |
+
"\n",
|
128 |
+
"import random\n",
|
129 |
+
"\n",
|
130 |
+
"N_GENERATIONS = 5 # generate only 5 QA couples here for cost and time considerations\n",
|
131 |
+
"\n",
|
132 |
+
"print(f\"Generating {N_GENERATIONS} QA couples...\")\n",
|
133 |
+
"\n",
|
134 |
+
"outputs = []\n",
|
135 |
+
"for sampled_context in tqdm(random.choices(docs_processed, k=N_GENERATIONS)):\n",
|
136 |
+
" # Generate QA pairs\n",
|
137 |
+
" output_QA_couple = llm.invoke(QA_generation_prompt.format(context=sampled_context.page_content)).content\n",
|
138 |
+
" try:\n",
|
139 |
+
" question = output_QA_couple.split(\"Factoid question: \")[-1].split(\"Answer: \")[0]\n",
|
140 |
+
" answer = output_QA_couple.split(\"Answer: \")[-1]\n",
|
141 |
+
" assert len(answer) < 500, \"Answer is too long\"\n",
|
142 |
+
" outputs.append(\n",
|
143 |
+
" {\n",
|
144 |
+
" \"context\": sampled_context.page_content,\n",
|
145 |
+
" \"question\": question,\n",
|
146 |
+
" \"answer\": answer,\n",
|
147 |
+
" \"source_doc\": sampled_context.metadata[\"source\"],\n",
|
148 |
+
" }\n",
|
149 |
+
" )\n",
|
150 |
+
" time.sleep(3) # sleep for llm rate limitation\n",
|
151 |
+
" except:\n",
|
152 |
+
" time.sleep(3) # sleep for llm rate limitation\n",
|
153 |
+
" continue"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"execution_count": null,
|
159 |
+
"metadata": {},
|
160 |
+
"outputs": [],
|
161 |
+
"source": [
|
162 |
+
"reference_df = pd.DataFrame(outputs)\n",
|
163 |
+
"display(reference_df.head(1))"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": null,
|
169 |
+
"metadata": {},
|
170 |
+
"outputs": [],
|
171 |
+
"source": [
|
172 |
+
"# build a simple rag chain\n",
|
173 |
+
"from langchain_huggingface import HuggingFaceEmbeddings\n",
|
174 |
+
"from langchain.vectorstores import FAISS\n",
|
175 |
+
"\n",
|
176 |
+
"chunk_size=1024\n",
|
177 |
+
"chunk_overlap=256\n",
|
178 |
+
"splitter = RecursiveCharacterTextSplitter(\n",
|
179 |
+
" separators=[\"\\n\\n\", \"\\n\"], chunk_size=chunk_size, chunk_overlap=chunk_overlap\n",
|
180 |
+
")\n",
|
181 |
+
"doc_chunks = splitter.split_documents(document)\n",
|
182 |
+
"\n",
|
183 |
+
"embeddings = HuggingFaceEmbeddings(model_name=\"all-mpnet-base-v2\")\n",
|
184 |
+
"\n",
|
185 |
+
"vectorstore = FAISS.from_documents(doc_chunks, embedding=embeddings)\n",
|
186 |
+
"\n",
|
187 |
+
"retriever = vectorstore.as_retriever()\n",
|
188 |
+
"\n",
|
189 |
+
"from langchain.chains import RetrievalQA\n",
|
190 |
+
"\n",
|
191 |
+
"rag_chain = RetrievalQA.from_llm(\n",
|
192 |
+
" llm=llm, retriever=retriever, return_source_documents=True\n",
|
193 |
+
" )"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"execution_count": null,
|
199 |
+
"metadata": {},
|
200 |
+
"outputs": [],
|
201 |
+
"source": [
|
202 |
+
"# Prepare evaluation data set\n",
|
203 |
+
"def prepare_eval_dataset(reference_df, rag_chain):\n",
|
204 |
+
" \n",
|
205 |
+
" print(\"now loading evaluation dataset...\")\n",
|
206 |
+
" from datasets import Dataset\n",
|
207 |
+
" # Read reference file\n",
|
208 |
+
" df = reference_df\n",
|
209 |
+
"\n",
|
210 |
+
" # Add anwsers from rag_chain\n",
|
211 |
+
" questions = df[\"question\"].values\n",
|
212 |
+
" ground_truth = []\n",
|
213 |
+
" for a in df[\"answer\"].values:\n",
|
214 |
+
" ground_truth.append(a) # [a] for older version of ragas\n",
|
215 |
+
" answers = []\n",
|
216 |
+
" contexts = []\n",
|
217 |
+
"\n",
|
218 |
+
" # Get anwswers from rag_chain\n",
|
219 |
+
" print(\"now getting anwsers from QA llm...\")\n",
|
220 |
+
" for query in questions:\n",
|
221 |
+
" results = rag_chain({\"query\": query})\n",
|
222 |
+
" answers.append(results[\"result\"])\n",
|
223 |
+
" contexts.append([docs.page_content for docs in results[\"source_documents\"]])\n",
|
224 |
+
" time.sleep(3) # sleep for llm rate limitation\n",
|
225 |
+
"\n",
|
226 |
+
" # To dict\n",
|
227 |
+
" data = {\n",
|
228 |
+
" \"question\": questions,\n",
|
229 |
+
" \"answer\": answers,\n",
|
230 |
+
" \"contexts\": contexts,\n",
|
231 |
+
" \"ground_truth\": ground_truth,\n",
|
232 |
+
" }\n",
|
233 |
+
"\n",
|
234 |
+
" # Convert dict to dataset\n",
|
235 |
+
" dataset = Dataset.from_dict(data)\n",
|
236 |
+
" return dataset\n",
|
237 |
+
"\n",
|
238 |
+
"eval_dataset = prepare_eval_dataset(reference_df, rag_chain)\n",
|
239 |
+
"eval_dataset\n"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "code",
|
244 |
+
"execution_count": null,
|
245 |
+
"metadata": {},
|
246 |
+
"outputs": [],
|
247 |
+
"source": [
|
248 |
+
"# Ragas evaluation\n",
|
249 |
+
"from ragas.llms import LangchainLLMWrapper\n",
|
250 |
+
"eval_llm = LangchainLLMWrapper(llm)\n",
|
251 |
+
"\n",
|
252 |
+
"from ragas import evaluate\n",
|
253 |
+
"from ragas.metrics import (\n",
|
254 |
+
" faithfulness,\n",
|
255 |
+
" answer_relevancy,\n",
|
256 |
+
" context_recall,\n",
|
257 |
+
" context_precision,\n",
|
258 |
+
" answer_correctness,\n",
|
259 |
+
")\n",
|
260 |
+
"result_eval_df = evaluate(\n",
|
261 |
+
" dataset=eval_dataset,\n",
|
262 |
+
" metrics=[\n",
|
263 |
+
" context_precision,\n",
|
264 |
+
" context_recall,\n",
|
265 |
+
" faithfulness,\n",
|
266 |
+
" answer_relevancy,\n",
|
267 |
+
" answer_correctness,\n",
|
268 |
+
" ],\n",
|
269 |
+
" llm=eval_llm, embeddings=embeddings,\n",
|
270 |
+
" raise_exceptions=False,\n",
|
271 |
+
")\n",
|
272 |
+
"\n",
|
273 |
+
"result_eval_df = result_eval_df.to_pandas() # can take a while"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": null,
|
279 |
+
"metadata": {},
|
280 |
+
"outputs": [],
|
281 |
+
"source": [
|
282 |
+
"# Check results\n",
|
283 |
+
"result_eval_df\n",
|
284 |
+
"# if you get NaN in results, check \"Frequently Asked Questions\" in Ragas for help"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"execution_count": null,
|
290 |
+
"metadata": {},
|
291 |
+
"outputs": [],
|
292 |
+
"source": []
|
293 |
+
}
|
294 |
+
],
|
295 |
+
"metadata": {
|
296 |
+
"kernelspec": {
|
297 |
+
"display_name": "Python 3",
|
298 |
+
"language": "python",
|
299 |
+
"name": "python3"
|
300 |
+
},
|
301 |
+
"language_info": {
|
302 |
+
"codemirror_mode": {
|
303 |
+
"name": "ipython",
|
304 |
+
"version": 3
|
305 |
+
},
|
306 |
+
"file_extension": ".py",
|
307 |
+
"mimetype": "text/x-python",
|
308 |
+
"name": "python",
|
309 |
+
"nbconvert_exporter": "python",
|
310 |
+
"pygments_lexer": "ipython3",
|
311 |
+
"version": "3.12.1"
|
312 |
+
}
|
313 |
+
},
|
314 |
+
"nbformat": 4,
|
315 |
+
"nbformat_minor": 2
|
316 |
+
}
|