import torch import sys from torch import nn from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from sam import FM_to_MD_sam_Util from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from sam import FMLoRA_sam_Util from sam import ElasticsamUtil from utils.dl.common.model import LayerActivation, get_module, get_parameter from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.dl.common.loss import CrossEntropyLossSoft import torch.nn.functional as F class ElasticDNN_ViT_OfflineSegFMModel(ElasticDNN_OfflineSegFMModel): def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): return FM_to_MD_sam_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], reducing_width_ratio, samples).to(self.device) def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device) def get_elastic_dnn_util(self) -> ElasticDNNUtil: return ElasticsamUtil() def forward_to_get_task_loss(self, x, y, *args, **kwargs): return F.cross_entropy(self.infer(x), y) def get_lora_util(self) -> FMLoRA_Util: return FMLoRA_sam_Util() def get_task_head_params(self): head = get_module(self.models_dict['main'], 'head') return list(head.parameters()) class ElasticDNN_ViT_OfflineSegMDModel(ElasticDNN_OfflineSegMDModel): def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device) def forward_to_get_task_loss(self, x, y, *args, **kwargs): return F.cross_entropy(self.infer(x), y) def get_distill_loss(self, student_output, teacher_output): return F.mse_loss(student_output, teacher_output) def get_matched_param_of_fm(self, self_param_name, fm: nn.Module): if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]): return None # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz if 'to_qkv.weight' in self_param_name: ss = self_param_name.split('.') fm_qkv_name = '.'.join(ss[0: -2]) + '.fc' fm_qkv = get_module(fm, fm_qkv_name) fm_abs_name = '.'.join(ss[0: -2]) + '.ab' fm_abs = get_module(fm, fm_abs_name) return torch.cat([ fm_qkv.weight.data, # task-agnositc params torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0) # task-specific params (LoRA) ], dim=0) elif 'to_qkv.bias' in self_param_name: ss = self_param_name.split('.') fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias' return get_parameter(fm, fm_qkv_name) elif 'mlp.fc1' in self_param_name: fm_param_name = self_param_name.replace('.linear', '') return get_parameter(fm, fm_param_name) else: return get_parameter(fm, self_param_name) if __name__ == '__main__': from utils.dl.common.env import set_random_seed set_random_seed(1) # 3. init scenario scenario = build_scenario( source_datasets_name=['GTA5', 'SuperviselyPerson'], target_datasets_order=['Cityscapes', 'BaiduPerson'] * 10, da_mode='close_set', data_dirs={ 'GTA5': '/data/zql/datasets/GTA-ls-copy/GTA5', 'SuperviselyPerson': '/data/zql/datasets/supervisely_person/Supervisely Person Dataset', 'Cityscapes': '/data/zql/datasets/cityscape/', 'BaiduPerson': '/data/zql/datasets/baidu_person/clean_images/' }, ) # 1. init model # from dnns.deeplabv3.head import modify_forward_head # modify_forward_head() # TODO: bring a bug from dnns.vit import vit_b_16 fm_models_dict_path = 'new_impl/cv/sam/results/seg.py/20231123/999983-212616/models/fm_best.pt' fm_models = torch.load(fm_models_dict_path) # for n,m in fm_models['main'].named_modules(): # print(n) # from utils.dl.common.model import set_module # set_module( # fm_models['main'], # 'norm', # nn.Sequential( # get_module(fm_models['main'], 'norm'), # get_module(fm_models['main'], 'head') # ) # ) # set_module(fm_models['main'], 'head', nn.Identity()) # fm_models['main'].forward = fm_models['main'].forward_features fm_models_dict_path = save_models_dict_for_init(fm_models, __file__, 'fm_sam_seg_lora') md_models_dict_path = save_models_dict_for_init({ 'main': -1 }, __file__, 'md_sam_none') device = 'cuda' fm_model = ElasticDNN_ViT_OfflineSegFMModel('fm', fm_models_dict_path, device, scenario.num_classes) md_model = ElasticDNN_ViT_OfflineSegMDModel('md', md_models_dict_path, device, scenario.num_classes) # 2. init alg models = { 'fm': fm_model, 'md': md_model } fm_to_md_alg = ElasticDNN_MDPretrainingWoFBSAlg(models, get_res_save_dir(__file__, None)) from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup fm_to_md_alg.run(scenario, hyps={ 'launch_tbboard': False, 'samples_size': (1, 3, 224, 224), 'generate_md_width_ratio': 8, 'train_batch_size': 16, 'val_batch_size': 128, 'num_workers': 16, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 5e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, 'scheduler': 'LambdaLR', 'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)}, 'num_iters': 80000, 'val_freq': 1000, 'distill_loss_weight': 1.0 })