from typing import List from data.dataloader import build_dataloader # from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel import torch import sys from torch import nn from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from sam import FM_to_MD_sam_Util from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from sam import FMLoRA_sam_Util from sam import ElasticsamUtil from utils.common.file import ensure_dir from utils.dl.common.model import LayerActivation, get_module, get_parameter from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.dl.common.loss import CrossEntropyLossSoft import torch.nn.functional as F from utils.dl.common.env import create_tbwriter import os from utils.common.log import logger from utils.common.data_record import write_json # from methods.shot.shot import OnlineShotModel from new_impl.cv.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg import tqdm from new_impl.cv.feat_align.mmd import mmd_rbf from new_impl.cv.utils.baseline_da import baseline_da device = 'cuda' app_name = 'cls' scenario = build_scenario( source_datasets_name=['GTA5', 'SuperviselyPerson'], target_datasets_order=['Cityscapes', 'BaiduPerson'] * 10, da_mode='close_set', data_dirs={ 'GTA5': '/data/zql/datasets/GTA-ls-copy/GTA5', 'SuperviselyPerson': '/data/zql/datasets/supervisely_person/Supervisely Person Dataset', 'Cityscapes': '/data/zql/datasets/cityscape/', 'BaiduPerson': '/data/zql/datasets/baidu_person/clean_images/' }, ) class SegOnlineFeatAlignModel(OnlineFeatAlignModel): def __init__(self, name: str, models_dict_path: str, device: str, num_classes): super().__init__(name, models_dict_path, device) self.num_classes = num_classes def get_feature_hook(self): return LayerActivation(get_module(self.models_dict['main'], 'head'), False, self.device) def forward_to_get_task_loss(self, x, y): return F.cross_entropy(self.infer(x), y) def get_mmd_loss(self, f1, f2): return mmd_rbf(f1.flatten(1), f2.flatten(1)) def infer(self, x, *args, **kwargs): return self.models_dict['main'](x) def get_trained_params(self): qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'qkv.weight' in n or 'norm' in n or 'mlp' in n] return qkv_and_norm_params def infer(self, x, *args, **kwargs): return self.models_dict['main'](x) def get_accuracy(self, test_loader, *args, **kwargs): device = self.device self.to_eval_mode() from methods.elasticdnn.api.model import StreamSegMetrics metrics = StreamSegMetrics(self.num_classes) metrics.reset() import tqdm pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), leave=False, dynamic_ncols=True) with torch.no_grad(): for batch_index, (x, y) in pbar: x, y = x.to(device, dtype=x.dtype, non_blocking=True, copy=False), \ y.to(device, dtype=y.dtype, non_blocking=True, copy=False) output = self.infer(x) pred = output.detach().max(dim=1)[1].cpu().numpy() metrics.update((y + 0).cpu().numpy(), pred) res = metrics.get_results() pbar.set_description(f'cur batch mIoU: {res["Mean Acc"]:.4f}') res = metrics.get_results() return res['Mean Acc'] da_alg = FeatAlignAlg #from experiments.cua.vit_b_16.online.cls.model import ClsOnlineFeatAlignModel da_model = SegOnlineFeatAlignModel( app_name, 'new_impl/cv/sam/results/seg_wo_fbs.py/20231130/999999-144157/models/md_best.pt', device, scenario.num_classes ) da_alg_hyp = {'Cityscapes': { 'train_batch_size': 16, 'val_batch_size': 128, 'num_workers': 16, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 1e-9, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, 'scheduler': '', 'scheduler_args': {}, 'num_iters': 10, 'val_freq': 20, # 'sd_sparsity': 0.8, 'feat_align_loss_weight': 3.0 }, 'BaiduPerson': { 'train_batch_size': 16, 'val_batch_size': 128, 'num_workers': 16, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 1e-2, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, 'scheduler': '', 'scheduler_args': {}, 'num_iters': 10, 'val_freq': 20, # 'sd_sparsity': 0.8, 'feat_align_loss_weight': 0.3 }} baseline_da( app_name, scenario, da_alg, da_alg_hyp, da_model, device, __file__, sys.argv[0] )