import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): print(f'ff input size: {x.size()}') return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() # dim_head: qkv output size of each head self.inner_dim = inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) # to_q: (embed_dim, num_head, dim_head) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): print(f'attn input size: {x.size()}, to_qkv weight: {self.to_qkv}') print(self.inner_dim) qkv = self.to_qkv(x).chunk(3, dim = -1) print([i.size() for i in qkv]) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) print(q.size(), k.size(), v.size()) # (batch size 2, num_heads 12, num_patches + 1 65, d: dim_head) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) # Attention(Q, K, V) = softmax(QK^T / sqrt(d_k)) * V out = rearrange(out, 'b h n d -> b n (h d)') print(f'out: {out.size()}') res = self.to_out(out) print(f'linear: {self.to_out}') print(f'result (out after linear): {res.size()}') return res class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) self.patch_dim = patch_dim = channels * patch_height * patch_width assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): print(f'raw img: {img.size()}') # (B, c, h, w) x = self.to_patch_embedding(img) # (B, h*w/p^2, c*p^2) -> (B, h*w/p^2, d) print(f'raw patch dim: {self.patch_dim}') print(f'patch embeddings: {x.size()}') b, n, _ = x.shape # b: batch size, n: # patches cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b) print(f'class tokens: {cls_tokens.size()}') x = torch.cat((cls_tokens, x), dim=1) print(f'class tokens + patch embeddings: {x.size()}') # print(self.pos_embedding[:, :(n + 1)].size(), self.pos_embedding.size()) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x) if __name__ == '__main__': vit_b_32 = ViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 1024, # encoder layer/attention input/output size (Hidden Size D in the paper) depth = 12, heads = 12, # (Heads in the paper) dim_head = 64, # attention hidden size (seems be default, never change this) mlp_dim = 3072, # mlp layer hidden size (MLP size in the paper) dropout = 0., emb_dropout = 0. ) with torch.no_grad(): r = torch.rand((2, 3, 256, 256)) print(vit_b_32(r).size()) import os torch.save(vit_b_32, './vit_l.pt') print(os.path.getsize('./vit_l.pt') / 1024**2) os.remove('./vit_l.pt')