|
import torch |
|
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel |
|
from new_impl.cv.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg |
|
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from sam import FMLoRA_sam_Util |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from sam import FM_to_MD_sam_Util |
|
from sam import ElasticsamUtil |
|
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_scenario |
|
import torch.nn.functional as F |
|
|
|
|
|
class ElasticDNN_sam_OfflineSegFMModel(ElasticDNN_OfflineSegFMModel): |
|
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): |
|
return FM_to_MD_sam_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], |
|
reducing_width_ratio, samples) |
|
|
|
def get_feature_hook(self) -> LayerActivation: |
|
return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device) |
|
|
|
def get_elastic_dnn_util(self) -> ElasticDNNUtil: |
|
return ElasticsamUtil() |
|
|
|
def forward_to_get_task_loss(self, x, y, *args, **kwargs): |
|
return F.cross_entropy(self.infer(x), y) |
|
|
|
def get_lora_util(self) -> FMLoRA_Util: |
|
return FMLoRA_sam_Util() |
|
|
|
def get_task_head_params(self): |
|
head = get_module(self.models_dict['main'], 'head') |
|
return list(head.parameters()) |
|
|
|
|
|
class ElasticDNN_sam_OfflineSegMDModel(ElasticDNN_OfflineSegMDModel): |
|
def get_feature_hook(self) -> LayerActivation: |
|
return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device) |
|
|
|
def forward_to_get_task_loss(self, x, y, *args, **kwargs): |
|
return F.cross_entropy(self.infer(x).pred_masks, y) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
scenario = build_scenario( |
|
source_datasets_name=['GTA5', 'SuperviselyPerson'], |
|
target_datasets_order=['Cityscapes', 'BaiduPerson'] * 10, |
|
da_mode='close_set', |
|
data_dirs={ |
|
'GTA5': '/data/zql/datasets/GTA-ls-copy/GTA5', |
|
'SuperviselyPerson': '/data/zql/datasets/supervisely_person/Supervisely Person Dataset', |
|
'Cityscapes': '/data/zql/datasets/cityscape/', |
|
'BaiduPerson': '/data/zql/datasets/baidu_person/clean_images/' |
|
}, |
|
) |
|
|
|
|
|
torch.cuda.set_device(1) |
|
device = 'cuda' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from sam import Sammodel |
|
seg_model = Sammodel.from_pretrained('new_impl/cv/sam/sam_pretrained',ignore_mismatched_sizes=True,num_classes=scenario.num_classes) |
|
|
|
|
|
|
|
|
|
fm_models_dict_path = save_models_dict_for_init({ |
|
'main': seg_model |
|
}, __file__, 'fm_sam_pretrained_with_seg_head') |
|
|
|
fm_model = ElasticDNN_sam_OfflineSegFMModel('fm', fm_models_dict_path, device, scenario.num_classes) |
|
|
|
|
|
models = { |
|
'fm': fm_model |
|
} |
|
fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__)) |
|
|
|
from PIL import ImageFile |
|
ImageFile.LOAD_TRUNCATED_IMAGES = True |
|
|
|
|
|
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup |
|
fm_lora_alg.run(scenario, hyps={ |
|
'launch_tbboard': False, |
|
|
|
'samples_size': (1, 3, 224, 224), |
|
'ab_r': 8, |
|
'train_batch_size': 16, |
|
'val_batch_size': 256, |
|
'num_workers': 16, |
|
'optimizer': 'Adam', |
|
'optimizer_args': {'lr': 5e-3, 'betas': [0.9, 0.999]}, |
|
'scheduler': 'LambdaLR', |
|
'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)}, |
|
'num_iters': 80000, |
|
'val_freq': 400 |
|
}) |