|
from typing import List |
|
from data.dataloader import build_dataloader |
|
|
|
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel |
|
|
|
import torch |
|
import sys |
|
from torch import nn |
|
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel |
|
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg |
|
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from clip import FM_to_MD_clip_Util |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from clip import FMLoRA_clip_Util |
|
from clip import ElasticclipUtil |
|
from utils.common.file import ensure_dir |
|
from utils.dl.common.model import LayerActivation, get_module, get_parameter |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_scenario |
|
from utils.dl.common.loss import CrossEntropyLossSoft |
|
import torch.nn.functional as F |
|
from utils.dl.common.env import create_tbwriter |
|
import os |
|
from utils.common.log import logger |
|
from utils.common.data_record import write_json |
|
|
|
from new_impl.cv.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg |
|
import tqdm |
|
from new_impl.cv.feat_align.mmd import mmd_rbf |
|
from new_impl.cv.utils.baseline_da import baseline_da |
|
|
|
device = 'cuda' |
|
app_name = 'cls' |
|
|
|
scenario = build_scenario( |
|
source_datasets_name=['GTA5Cls', 'SuperviselyPersonCls'], |
|
target_datasets_order=['CityscapesCls', 'BaiduPersonCls'] * 15, |
|
da_mode='close_set', |
|
data_dirs={ |
|
'GTA5Cls': '/data/zql/datasets/gta5_for_cls_task', |
|
'SuperviselyPersonCls': '/data/zql/datasets/supervisely_person_for_cls_task', |
|
'CityscapesCls': '/data/zql/datasets/cityscapes_for_cls_task', |
|
'BaiduPersonCls': '/data/zql/datasets/baiduperson_for_cls_task' |
|
}, |
|
) |
|
class ClsOnlineFeatAlignModel(OnlineFeatAlignModel): |
|
def get_trained_params(self): |
|
|
|
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()] |
|
return qkv_and_norm_params |
|
|
|
def get_feature_hook(self): |
|
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), False, self.device) |
|
|
|
def forward_to_get_task_loss(self, x, y): |
|
return F.cross_entropy(self.infer(x), y) |
|
|
|
def get_mmd_loss(self, f1, f2): |
|
return mmd_rbf(f1, f2) |
|
|
|
def infer(self, x, *args, **kwargs): |
|
return self.models_dict['main'](x) |
|
|
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
acc = 0 |
|
sample_num = 0 |
|
|
|
self.to_eval_mode() |
|
|
|
with torch.no_grad(): |
|
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) |
|
for batch_index, (x, y) in pbar: |
|
x, y = x.to(self.device), y.to(self.device) |
|
output = self.infer(x) |
|
pred = F.softmax(output, dim=1).argmax(dim=1) |
|
correct = torch.eq(pred, y).sum().item() |
|
acc += correct |
|
sample_num += len(y) |
|
|
|
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' |
|
f'cur_batch_acc: {(correct / len(y)):.4f}') |
|
|
|
acc /= sample_num |
|
return acc |
|
|
|
|
|
da_alg = FeatAlignAlg |
|
|
|
da_model = ClsOnlineFeatAlignModel( |
|
app_name, |
|
'new_impl/cv/clip/results/cls_md_wo_fbs.py/20231115/999998-195939-/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/cv/clip/cls_md_wo_fbs.py/models/md_best.pt', |
|
device |
|
) |
|
da_alg_hyp = { |
|
'CityscapesCls': { |
|
'train_batch_size': 64, |
|
'val_batch_size': 512, |
|
'num_workers': 8, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 4e-8/2, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 100, |
|
'val_freq': 20, |
|
'feat_align_loss_weight': 3.0 |
|
}, |
|
'BaiduPersonCls': { |
|
'train_batch_size': 64, |
|
'val_batch_size': 512, |
|
'num_workers': 8, |
|
'optimizer': 'SGD', |
|
'optimizer_args': {'lr': 1e-10, 'momentum': 0.9}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 100, |
|
'val_freq': 20, |
|
'feat_align_loss_weight': 0.2 |
|
} |
|
} |
|
|
|
|
|
baseline_da( |
|
app_name, |
|
scenario, |
|
da_alg, |
|
da_alg_hyp, |
|
da_model, |
|
device, |
|
__file__, |
|
sys.argv[0] |
|
) |
|
|