File size: 7,776 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineVQAFMModel, ElasticDNN_OfflineVQAMDModel
from new_impl.cv.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from blip import FMLoRA_blip_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from blip import FM_to_MD_blip_Util
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.common.log import logger
import torch.nn.functional as F
import sys
from torch import nn
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg



class ElasticDNN_blip_OfflineVQAFMModel(ElasticDNN_OfflineVQAFMModel):
    def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor):
        return FM_to_MD_blip_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], 
                                                                        reducing_width_ratio, samples)
        # raise NotImplementedError

    def get_feature_hook(self) -> LayerActivation:
        return LayerActivation(get_module(self.models_dict['main'], 'text_decoder.cls.predictions.decoder'), True, self.device)
    
    def get_elastic_dnn_util(self) -> ElasticDNNUtil:
        raise NotImplementedError
    
    def forward_to_get_task_loss(self, x, y, *args, **kwargs):
        self.to_train_mode()
        # print(x['input_ids'].size(), x['pixel_values'].size(), )
        o = self.infer(x).logits
        
        # print(o.size(), y.size(), o, y)
        
        return F.binary_cross_entropy_with_logits(o, y) * y.shape[1]
    
    def get_lora_util(self) -> FMLoRA_Util:
        return FMLoRA_blip_Util()
    
    def get_task_head_params(self):
        head = get_module(self.models_dict['main'], 'text_decoder.cls.predictions.decoder')
        params_name = {k for k, v in head.named_parameters()}
        logger.info(f'task head params: {params_name}')
        return list(head.parameters())
        
        
class ElasticDNN_blip_OfflineVQAMDModel(ElasticDNN_OfflineVQAMDModel):
    def get_feature_hook(self) -> LayerActivation:
        return LayerActivation(get_module(self.models_dict['main'], 'text_decoder.cls.predictions.decoder'), True, self.device)
    
    # def forward_to_get_task_loss(self, x, y, *args, **kwargs):
    #     self.to_train_mode()
    #     # print(x['input_ids'].size(), x['pixel_values'].size(), )
    #     o = self.infer(x)
        
    #     # print(o.size(), y.size(), o, y)
        
    #     return F.binary_cross_entropy_with_logits(o, y) * y.shape[1]
    def forward_to_get_task_loss(self, x, y, *args, **kwargs):
        self.to_train_mode()

        o = self.models_dict['main'](**y)
        return o.loss
    
    def get_distill_loss(self, student_output, teacher_output):
        #print(student_output.shape, teacher_output.shape)
        return F.mse_loss(student_output, teacher_output.detach())
        #return F.cross_entropy(student_output, teacher_output.detach())
    
    def get_trained_params(self):
        return self.models_dict['main'].parameters()
    
    def get_matched_param_of_fm(self, self_param_name, fm: nn.Module): # TODO:
        if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]):
            return None
        
        p = get_parameter(self.models_dict['main'], self_param_name)
        if p.dim() == 0:
            return None
        
        elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name:
            # if self_param_name.startswith('norm'):
            #     return None
            return get_parameter(fm, self_param_name)
        
        # 1. xx.query.weight -> xx.query.fc.weight and xx.query.ab.0/1
        if ('query' in self_param_name or 'key' in self_param_name or \
            'value' in self_param_name) and ('weight' in self_param_name):
            ss = self_param_name.split('.')
            # raise NotImplementedError() # TODO:
            fm_qkv_name = '.'.join(ss[0: -1]) + '.fc'
            fm_qkv = get_module(fm, fm_qkv_name)
            
            fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
            fm_abs = get_module(fm, fm_abs_name)
            
            return torch.cat([
                fm_qkv.weight.data, # task-agnositc params
                fm_abs[1].weight @ fm_abs[0].weight
            ], dim=0)
            
        elif ('query' in self_param_name or 'key' in self_param_name or \
            'value' in self_param_name) and ('bias' in self_param_name):
            ss = self_param_name.split('.')
            
            fm_qkv_name = '.'.join(ss[0: -1]) + '.fc.bias'
            return get_parameter(fm, fm_qkv_name)
            
        elif 'intermediate.dense' in self_param_name:
            fm_param_name = self_param_name.replace('.linear', '')
            return get_parameter(fm, fm_param_name)

        else:
            return get_parameter(fm, self_param_name)
    
    
if __name__ == '__main__':
    from utils.dl.common.env import set_random_seed
    set_random_seed(1)
    
    scenario = build_scenario(
        source_datasets_name=['VQA_split1'],
        target_datasets_order=['VQA_split1_c'] * 1, # TODO
        da_mode='close_set',
        data_dirs={
            'VQA_split1': '/data/zql/datasets/vqav2',
            'VQA_split1_c': '/data/zql/datasets/vqav2'
        },
    )
    
    # 1. init model
    fm_models_dict_path = 'new_impl/mm/Vis_bert/QuestionAnswering/results/blip_lora.py/20231018/999999-095006-/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/mm/Vis_bert/QuestionAnswering/blip_lora.py/models/fm_best.pt'
    fm_models = torch.load(fm_models_dict_path)
    fm_models_dict_path = save_models_dict_for_init(fm_models, __file__, 'fm_blip_vqa_lora')
    md_models_dict_path = save_models_dict_for_init({
        'main': -1
    }, __file__, 'md_blip_none')
    torch.cuda.set_device(1)
    device = 'cuda'
    
    fm_model = ElasticDNN_blip_OfflineVQAFMModel('fm', fm_models_dict_path, device)
    md_model = ElasticDNN_blip_OfflineVQAMDModel('md', md_models_dict_path, device)
    
    # 2. init alg
    models = {
        'fm': fm_model,
        'md': md_model
    }
    import sys
    
    # from experiments.elasticdnn.clip.offline.fm_to_md.cls.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
    # from methods.elasticdnn.api.algs.md_pretraining_wo_fbs_clip_debug import ElasticDNN_MDPretrainingWoFBSAlg
    fm_to_md_alg = ElasticDNN_MDPretrainingWoFBSAlg(models, get_res_save_dir(__file__, sys.argv[0]))
    
    # sample_dataset = list(scenario.get_offline_datasets().values())[0]['train']
    
    sample_dataset = list(scenario.get_offline_datasets().values())[0]['train']
    sample = sample_dataset[0][0]
    
    for k, v in sample.items():
        sample[k] = v.unsqueeze(0)
    
    from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup
    fm_to_md_alg.run(scenario, hyps={
        'launch_tbboard': False,
        
        'samples_size': sample,
        'generate_md_width_ratio': 4,
        
        'train_batch_size':32,
        'val_batch_size': 512,
        'num_workers': 16,
        'optimizer': 'AdamW',
        'optimizer_args': {'lr': 1e-5, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
        'scheduler': 'LambdaLR',
        'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)},
        'num_iters': 80000,
        'val_freq': 1000,
        'distill_loss_weight': 1.
    })