File size: 6,340 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import sys
from torch import nn
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from sam import FM_to_MD_sam_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from sam import FMLoRA_sam_Util
from sam import ElasticsamUtil
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F


class ElasticDNN_ViT_OfflineSegFMModel(ElasticDNN_OfflineSegFMModel):
    def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor):
        return FM_to_MD_sam_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], 
                                                                        reducing_width_ratio, samples).to(self.device)
        
    def get_feature_hook(self) -> LayerActivation:
        return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device)
    
    def get_elastic_dnn_util(self) -> ElasticDNNUtil:
        return ElasticsamUtil()
    
    def forward_to_get_task_loss(self, x, y, *args, **kwargs):
        return F.cross_entropy(self.infer(x), y)
    
    def get_lora_util(self) -> FMLoRA_Util:
        return FMLoRA_sam_Util()
    
    def get_task_head_params(self):
        head = get_module(self.models_dict['main'], 'head')
        return list(head.parameters())
        
        
class ElasticDNN_ViT_OfflineSegMDModel(ElasticDNN_OfflineSegMDModel):
        
    def get_feature_hook(self) -> LayerActivation:
        return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device)
    
    def forward_to_get_task_loss(self, x, y, *args, **kwargs):
        return F.cross_entropy(self.infer(x), y)
    
    def get_distill_loss(self, student_output, teacher_output):
        return F.mse_loss(student_output, teacher_output)
    
    def get_matched_param_of_fm(self, self_param_name, fm: nn.Module):
        if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]):
            return None
        
        # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
        if 'to_qkv.weight' in self_param_name:
            ss = self_param_name.split('.')
            
            fm_qkv_name = '.'.join(ss[0: -2]) + '.fc'
            fm_qkv = get_module(fm, fm_qkv_name)
            
            fm_abs_name = '.'.join(ss[0: -2]) + '.ab'
            fm_abs = get_module(fm, fm_abs_name)
            
            return torch.cat([
                fm_qkv.weight.data, # task-agnositc params
                torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0) # task-specific params (LoRA)
            ], dim=0)
            
        elif 'to_qkv.bias' in self_param_name:
            ss = self_param_name.split('.')
            
            fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
            return get_parameter(fm, fm_qkv_name)
            
        elif 'mlp.fc1' in self_param_name:
            fm_param_name = self_param_name.replace('.linear', '')
            return get_parameter(fm, fm_param_name)

        else:
            return get_parameter(fm, self_param_name)
        
        
if __name__ == '__main__':
    from utils.dl.common.env import set_random_seed
    set_random_seed(1)
    
    # 3. init scenario
    scenario = build_scenario(
        source_datasets_name=['GTA5', 'SuperviselyPerson'],
        target_datasets_order=['Cityscapes', 'BaiduPerson'] * 10,
        da_mode='close_set',
        data_dirs={
            'GTA5': '/data/zql/datasets/GTA-ls-copy/GTA5',
            'SuperviselyPerson': '/data/zql/datasets/supervisely_person/Supervisely Person Dataset',
            'Cityscapes': '/data/zql/datasets/cityscape/',
            'BaiduPerson': '/data/zql/datasets/baidu_person/clean_images/'
        },
    )
    
    # 1. init model
    # from dnns.deeplabv3.head import modify_forward_head
    # modify_forward_head() # TODO: bring a bug
    from dnns.vit import vit_b_16
    fm_models_dict_path = 'new_impl/cv/sam/results/seg.py/20231123/999983-212616/models/fm_best.pt'
    fm_models = torch.load(fm_models_dict_path)
    # for n,m in fm_models['main'].named_modules():
    #     print(n)
    # from utils.dl.common.model import set_module
    # set_module(
    #     fm_models['main'],
    #     'norm',
    #     nn.Sequential(
    #         get_module(fm_models['main'], 'norm'),
    #         get_module(fm_models['main'], 'head')
    #     )
    # )
    # set_module(fm_models['main'], 'head', nn.Identity())
    # fm_models['main'].forward = fm_models['main'].forward_features
    
    fm_models_dict_path = save_models_dict_for_init(fm_models, __file__, 'fm_sam_seg_lora')
    md_models_dict_path = save_models_dict_for_init({
        'main': -1
    }, __file__, 'md_sam_none')
    device = 'cuda'
    
    fm_model = ElasticDNN_ViT_OfflineSegFMModel('fm', fm_models_dict_path, device, scenario.num_classes)
    md_model = ElasticDNN_ViT_OfflineSegMDModel('md', md_models_dict_path, device, scenario.num_classes)
    
    # 2. init alg
    models = {
        'fm': fm_model,
        'md': md_model
    }
    fm_to_md_alg = ElasticDNN_MDPretrainingWoFBSAlg(models, get_res_save_dir(__file__, None))
    
    from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup
    fm_to_md_alg.run(scenario, hyps={
        'launch_tbboard': False,
        
        'samples_size': (1, 3, 224, 224),
        'generate_md_width_ratio': 8,
        
        'train_batch_size': 16,
        'val_batch_size': 128,
        'num_workers': 16,
        'optimizer': 'AdamW',
        'optimizer_args': {'lr': 5e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
        'scheduler': 'LambdaLR',
        'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)},
        'num_iters': 80000,
        'val_freq': 1000,
        'distill_loss_weight': 1.0
    })