File size: 5,120 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from typing import List
from data.dataloader import build_dataloader
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel

import torch
import sys
from torch import nn
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from sam import FM_to_MD_sam_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from sam import FMLoRA_sam_Util
from sam import ElasticsamUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from new_impl.cv.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from new_impl.cv.feat_align.mmd import mmd_rbf
from new_impl.cv.utils.baseline_da import baseline_da

device = 'cuda'
app_name = 'cls'

scenario = build_scenario(
        source_datasets_name=['GTA5', 'SuperviselyPerson'],
        target_datasets_order=['Cityscapes', 'BaiduPerson'] * 10,
        da_mode='close_set',
        data_dirs={
            'GTA5': '/data/zql/datasets/GTA-ls-copy/GTA5',
            'SuperviselyPerson': '/data/zql/datasets/supervisely_person/Supervisely Person Dataset',
            'Cityscapes': '/data/zql/datasets/cityscape/',
            'BaiduPerson': '/data/zql/datasets/baidu_person/clean_images/'
        },
    )
class SegOnlineFeatAlignModel(OnlineFeatAlignModel):
    def __init__(self, name: str, models_dict_path: str, device: str, num_classes):
        super().__init__(name, models_dict_path, device)
        self.num_classes = num_classes
        
    def get_feature_hook(self):
        return LayerActivation(get_module(self.models_dict['main'], 'head'), False, self.device)
    
    def forward_to_get_task_loss(self, x, y):
        return F.cross_entropy(self.infer(x), y)
    
    def get_mmd_loss(self, f1, f2):
        return mmd_rbf(f1.flatten(1), f2.flatten(1))
    
    def infer(self, x, *args, **kwargs):
        return self.models_dict['main'](x)
    
    def get_trained_params(self):
        qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'qkv.weight' in n or 'norm' in n or 'mlp' in n]
        return qkv_and_norm_params
    
    def infer(self, x, *args, **kwargs):
        return self.models_dict['main'](x)
    
    def get_accuracy(self, test_loader, *args, **kwargs):
        device = self.device
        self.to_eval_mode()
        from methods.elasticdnn.api.model import StreamSegMetrics
        metrics = StreamSegMetrics(self.num_classes)
        metrics.reset()
        import tqdm
        pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), leave=False, dynamic_ncols=True)
        with torch.no_grad():
            for batch_index, (x, y) in pbar:
                x, y = x.to(device, dtype=x.dtype, non_blocking=True, copy=False), \
                    y.to(device, dtype=y.dtype, non_blocking=True, copy=False)
                output = self.infer(x)
                pred = output.detach().max(dim=1)[1].cpu().numpy()
                metrics.update((y + 0).cpu().numpy(), pred)
                
                res = metrics.get_results()
                pbar.set_description(f'cur batch mIoU: {res["Mean Acc"]:.4f}')
                
        res = metrics.get_results()
        return res['Mean Acc']


da_alg = FeatAlignAlg
#from experiments.cua.vit_b_16.online.cls.model import ClsOnlineFeatAlignModel
da_model = SegOnlineFeatAlignModel(
    app_name,
    'new_impl/cv/sam/results/seg_wo_fbs.py/20231130/999999-144157/models/md_best.pt',
    device,
    scenario.num_classes
)
da_alg_hyp = {'Cityscapes': {
    'train_batch_size': 16,
    'val_batch_size': 128,
    'num_workers': 16,
    'optimizer': 'AdamW',
    'optimizer_args': {'lr': 1e-9, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
    'scheduler': '',
    'scheduler_args': {},
    'num_iters': 10,
    'val_freq': 20,
    # 'sd_sparsity': 0.8,
    'feat_align_loss_weight': 3.0
}, 'BaiduPerson': {
    'train_batch_size': 16,
    'val_batch_size': 128,
    'num_workers': 16,
    'optimizer': 'AdamW',
    'optimizer_args': {'lr': 1e-2, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
    'scheduler': '',
    'scheduler_args': {},
    'num_iters': 10,
    'val_freq': 20,
    # 'sd_sparsity': 0.8,
    'feat_align_loss_weight': 0.3
}}


baseline_da(
    app_name,
    scenario,
    da_alg,
    da_alg_hyp,
    da_model,
    device,
    __file__,
    sys.argv[0]
)