File size: 10,257 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from typing import Any, Dict, List
from schema import Schema
from data import Scenario, MergedDataset
from methods.base.alg import BaseAlg
from methods.base.model import BaseModel
from data import build_dataloader
import torch.optim
import tqdm
import os
import time
from abc import abstractmethod
import matplotlib.pyplot as plt
from torchvision.transforms import Compose
import torch.nn.functional as F

class OnlineFeatAlignModel(BaseModel):
    def get_required_model_components(self) -> List[str]:
        return ['main']
    
    @abstractmethod
    def get_feature_hook(self):
        pass
    
    @abstractmethod
    def forward_to_get_task_loss(self, x, y):
        pass

    @abstractmethod
    def get_trained_params(self):
        pass
    
    @abstractmethod
    def get_mmd_loss(self, f1, f2):
        pass
    

class FeatAlignAlg(BaseAlg):
    def get_required_models_schema(self) -> Schema:
        return Schema({
            'main': OnlineFeatAlignModel
        })
        
    def get_required_hyp_schema(self) -> Schema:
        from schema import Optional
        return Schema({
            'train_batch_size': int,
            'val_batch_size': int,
            'num_workers': int,
            'optimizer': str,
            'optimizer_args': dict,
            'scheduler': str,
            'scheduler_args': dict,
            'num_iters': int,
            'val_freq': int,
            'feat_align_loss_weight': float,
            Optional('transform'): Compose,
        })
        
    def run(self, scenario: Scenario, hyps: Dict, collate_fn=None) -> Dict[str, Any]:
        super().run(scenario, hyps)
        
        assert isinstance(self.models['main'], OnlineFeatAlignModel) # for auto completion
        
        cur_domain_name = scenario.target_domains_order[scenario.cur_domain_index]
        if 'transform' in hyps.keys():
            datasets_for_training = scenario.get_online_cur_domain_datasets_for_training(transform=hyps['transform'])
        else:
            datasets_for_training = scenario.get_online_cur_domain_datasets_for_training()
        train_dataset = datasets_for_training[cur_domain_name]['train']

        if 'transform' in hyps.keys():
            datasets_for_inference = scenario.get_online_cur_domain_datasets_for_inference(transform=hyps['transform'])
        else:
            datasets_for_inference = scenario.get_online_cur_domain_datasets_for_inference()
        test_dataset = datasets_for_inference
        
        train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
                            True, None, collate_fn=collate_fn))
        # test_loader = build_dataloader(test_dataset, hyps['val_batch_size'], hyps['num_workers'],
        #                                False, False, collate_fn=collate_fn)
        
        source_datasets = [d['train'] for n, d in datasets_for_training.items() if n != cur_domain_name]
        source_dataset = MergedDataset(source_datasets)
        # source_dataset_val = [d['val'] for n, d in datasets_for_training.items() if n != cur_domain_name][0]
        source_train_loader = iter(build_dataloader(source_dataset, hyps['train_batch_size'], hyps['num_workers'],
                            True, None, collate_fn=collate_fn))
        # source_val_loader = build_dataloader(source_dataset_val, hyps['val_batch_size'], hyps['num_workers'],
        #                     False, False, collate_fn=collate_fn)
        # 1. generate surrogate DNN
        # for n, m in self.models['main'].models_dict['md'].named_modules():
        #     if isinstance(m, nn.Linear):
        #         m.reset_parameters()
        # from utils.dl.common.model import set_module
        
        # for n, m in self.models['main'].models_dict['md'].named_modules():
        #     if m.__class__.__name__ == 'KTakesAll':
        #         set_module(self.models['main'].models_dict['md'], n, KTakesAll(0.5))
        # self.models['main'].set_sd_sparsity(hyps['sd_sparsity'])
        device = self.models['main'].device
        # surrogate_dnn = self.models['main'].generate_sd_by_target_samples(next(train_loader)[0].to(device))
        # self.models['sd'] = surrogate_dnn
        
        # 2. train surrogate DNN
        # TODO: train only a part of filters
        trained_params = self.models['main'].get_trained_params()
        optimizer = torch.optim.__dict__[hyps['optimizer']](trained_params, **hyps['optimizer_args'])
        if hyps['scheduler'] != '':
            scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
        else:
            scheduler = None
        
        pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True, desc='da...')
        task_losses, mmd_losses = [], []
        accs = []
        
        total_train_time = 0.
        
        feature_hook = self.models['main'].get_feature_hook()
        
        num_test = 256

        for iter_index in pbar:
            
            if iter_index % hyps['val_freq'] == 0:
                from data import split_dataset
                if 'transform' in hyps.keys():
                    cur_test_batch_dataset = split_dataset(test_dataset, num_test, iter_index, transform=hyps['transform'])[0]
                else:
                    cur_test_batch_dataset = split_dataset(test_dataset, num_test, iter_index)[0]
                cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, hyps['val_batch_size'], hyps['num_workers'], False, False, collate_fn=collate_fn)
                cur_acc = self.models['main'].get_accuracy(cur_test_batch_dataloader)
                # cur_source_acc = self.models['main'].get_accuracy(source_val_loader)
                accs += [{
                    'iter': iter_index,
                    'acc': cur_acc
                }]
            
            cur_start_time = time.time()
            
            self.models['main'].to_train_mode()
            
            x, _ = next(train_loader)
            
            if isinstance(x, dict):
                for k, v in x.items():
                    if isinstance(v, torch.Tensor):
                        x[k] = v.to(device)
            else:
                x = x.to(device)
            
            source_x, source_y = next(source_train_loader)
            
            if isinstance(source_x, dict):
                for k, v in source_x.items():
                    if isinstance(v, torch.Tensor):
                        source_x[k] = v.to(device)
                source_y = source_y.to(device)
            else:
                source_x, source_y = source_x.to(device), source_y.to(device)
            
            task_loss = self.models['main'].forward_to_get_task_loss(source_x, source_y)
            source_features = feature_hook.input

            source_vis_features = source_features[1]
            tlist = []
            for vis in source_vis_features:
                tmp = F.max_pool2d(input=vis, kernel_size=2, stride=2, return_indices=False)
                tmp = tmp.view(vis.shape[0], -1)
                tlist.append(tmp)
            source_vis_features = torch.cat(tlist, dim=1)
            source_lang_features = source_features[3]
            source_lang_aggregate_feature = source_lang_features['aggregate']
            source_lang_embedded_feature = source_lang_features['embedded'].flatten(1)
            source_lang_hidden_feature = source_lang_features['hidden'].flatten(1)
            source_features = torch.cat([source_vis_features, source_lang_aggregate_feature, source_lang_embedded_feature, source_lang_hidden_feature], dim=1)
            self.models['main'].infer(x)
            target_features = feature_hook.input
            
            target_vis_features = target_features[1]
            tlist = []
            for vis in target_vis_features:
                tmp = F.max_pool2d(input=vis, kernel_size=2, stride=2, return_indices=False)
                tmp = tmp.view(vis.shape[0], -1)
                tlist.append(tmp)
            target_vis_features = torch.cat(tlist, dim=1)
            target_lang_features = target_features[3]
            target_lang_aggregate_feature = target_lang_features['aggregate']
            target_lang_embedded_feature = target_lang_features['embedded'].flatten(1)
            target_lang_hidden_feature = target_lang_features['hidden'].flatten(1)
            target_features = torch.cat([target_vis_features, target_lang_aggregate_feature, target_lang_hidden_feature, target_lang_hidden_feature], dim=1)

            mmd_loss = self.models['main'].get_mmd_loss(source_features, target_features)
        
            loss = task_loss + hyps['feat_align_loss_weight'] * mmd_loss
            
            optimizer.zero_grad()
            loss.backward() 
            optimizer.step()
            if scheduler is not None:
                scheduler.step()
            
            pbar.set_description(f'da... | cur_acc: {cur_acc:.4f}, task_loss: {task_loss:.6f}, mmd_loss: {mmd_loss:.6f}')
            task_losses += [float(task_loss.cpu().item())]
            mmd_losses += [float(mmd_loss.cpu().item())]
            
            total_train_time += time.time() - cur_start_time
        
        feature_hook.remove()
        
        time_usage = total_train_time
        
        plt.plot(task_losses, label='task')
        plt.plot(mmd_losses, label='mmd')
        plt.xlabel('iteration')
        plt.ylabel('loss')
        plt.savefig(os.path.join(self.res_save_dir, 'loss.png'))
        plt.clf()

        if 'transform' in hyps.keys():
            cur_test_batch_dataset = split_dataset(test_dataset, num_test, iter_index + 1, transform=hyps['transform'])[0]
        else:
            cur_test_batch_dataset = split_dataset(test_dataset, num_test, iter_index + 1)[0]
        cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, hyps['val_batch_size'], hyps['num_workers'], False, False, collate_fn=collate_fn)
        cur_acc = self.models['main'].get_accuracy(cur_test_batch_dataloader)
        accs += [{
            'iter': iter_index + 1,
            'acc': cur_acc
        }]
        
        return {
            'accs': accs,
            'time': time_usage
        }, self.models