File size: 13,303 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from copy import deepcopy
from typing import Optional, Union
import torch
from torch import nn 
from einops import rearrange, repeat
from einops.layers.torch import Rearrange

from raw_vit import ViT, Attention, FeedForward
from utils.dl.common.model import get_model_size, set_module


class KTakesAll(nn.Module):
    # k means sparsity (the larger k is, the smaller model is)
    def __init__(self, k):
        super(KTakesAll, self).__init__()
        self.k = k
        
    def forward(self, g: torch.Tensor):
        k = int(g.size(1) * self.k)
        
        i = (-g).topk(k, 1)[1]
        t = g.scatter(1, i, 0)
                
        return t


class Abs(nn.Module):
    def __init__(self):
        super(Abs, self).__init__()
        
    def forward(self, x):
        return x.abs()


class SqueezeLast(nn.Module):
    def __init__(self):
        super(SqueezeLast, self).__init__()
    
    def forward(self, x):
        return x.squeeze(-1)


class Linear_WrappedWithFBS(nn.Module):
    def __init__(self, linear: nn.Linear, r, k):
        super(Linear_WrappedWithFBS, self).__init__()
        
        self.linear = linear
        
        # for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out)
        # for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out)
        self.fbs = nn.Sequential(
            Rearrange('b n d -> b d n'),
            Abs(),
            nn.AdaptiveAvgPool1d(1),
            SqueezeLast(),
            nn.Linear(linear.in_features, linear.out_features // r),
            nn.ReLU(),
            nn.Linear(linear.out_features // r, linear.out_features),
            nn.ReLU(),
            KTakesAll(k)
        )
        self.k = k
        
        self.cached_channel_attention = None # (batch_size, dim)
        self.use_cached_channel_attention = False
    
    def forward(self, x):
        if self.use_cached_channel_attention and self.cached_channel_attention is not None:
            channel_attention = self.cached_channel_attention
        else:
            channel_attention = self.fbs(x)
            self.cached_channel_attention = channel_attention
        
        raw_res = self.linear(x)
        return channel_attention.unsqueeze(1) * raw_res
    
    
class ToQKV_WrappedWithFBS(nn.Module):
    """
    This regards to_q/to_k/to_v as a whole (in fact it consists of multiple heads) and prunes it.
    It seems different channels of different heads are pruned according to the input. 
    This is different from "removing some head" or "removing the same channels in each head".
    """
    def __init__(self, to_qkv: nn.Linear, r, k):
        super(ToQKV_WrappedWithFBS, self).__init__()
        
        self.to_qkv = to_qkv
        self.fbses = nn.ModuleList([nn.Sequential(
            Rearrange('b n d -> b d n'),
            Abs(),
            nn.AdaptiveAvgPool1d(1),
            SqueezeLast(),
            nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 // r),
            nn.ReLU(),
            nn.Linear(to_qkv.out_features // 3 // r, to_qkv.out_features // 3),
            nn.ReLU(),
            KTakesAll(k)
        ) for _ in range(3)])
        self.k = k
        
        self.cached_channel_attention = None
        self.use_cached_channel_attention = False
    
    def forward(self, x):
        if self.use_cached_channel_attention and self.cached_channel_attention is not None:
            # print('use cache')
            channel_attention = self.cached_channel_attention
        else:
            # print('dynamic')
            channel_attention = torch.cat([fbs(x) for fbs in self.fbses], dim=1)
            self.cached_channel_attention = channel_attention
        
        raw_res = self.to_qkv(x)
        return channel_attention.unsqueeze(1) * raw_res
        
        
def boost_raw_vit_by_fbs(raw_vit: ViT, r, k):
    raw_vit = deepcopy(raw_vit)
    
    raw_vit_model_size = get_model_size(raw_vit, True)
    
    # set_module(raw_vit.to_patch_embedding, '2', Linear_WrappedWithFBS(raw_vit.to_patch_embedding[2], r, k))
    
    for attn, ff in raw_vit.transformer.layers:
        attn = attn.fn
        ff = ff.fn
        
        set_module(attn, 'to_qkv', ToQKV_WrappedWithFBS(attn.to_qkv, r, k))
        set_module(ff.net, '0', Linear_WrappedWithFBS(ff.net[0], r, k))
        
    boosted_vit_model_size = get_model_size(raw_vit, True)
    
    print(f'boost_raw_vit_by_fbs() | model size from {raw_vit_model_size:.3f}MB to {boosted_vit_model_size:.3f}MB '
          f'(↑ {((boosted_vit_model_size - raw_vit_model_size) / raw_vit_model_size * 100):.2f}%)')
        
    return raw_vit


def set_boosted_vit_sparsity(boosted_vit: ViT, sparsity: float):
    for attn, ff in boosted_vit.transformer.layers:
        attn = attn.fn
        ff = ff.fn
        
        q_features = attn.to_qkv.to_qkv.out_features // 3
        
        if (q_features - int(q_features * sparsity)) % attn.heads != 0:
            # tune sparsity to ensure #unpruned channel % num_heads == 0
            # so that the pruning seems to reduce the dim_head of each head
            tuned_sparsity = 1. - int((q_features - int(q_features * sparsity)) / attn.heads) * attn.heads / q_features
            print(f'set_boosted_vit_sparsity() | tune sparsity from {sparsity} to {tuned_sparsity}')
            sparsity = tuned_sparsity
        
        attn.to_qkv.k = sparsity
        for fbs in attn.to_qkv.fbses:
            fbs[-1].k = sparsity
        ff.net[0].k = sparsity
        ff.net[0].fbs[-1].k = sparsity


def set_boosted_vit_inference_via_cached_channel_attentions(boosted_vit: ViT):
    for attn, ff in boosted_vit.transformer.layers:
        attn = attn.fn
        ff = ff.fn
        
        assert attn.to_qkv.cached_channel_attention is not None
        assert ff.net[0].cached_channel_attention is not None
        
        attn.to_qkv.use_cached_channel_attention = True
        ff.net[0].use_cached_channel_attention = True
        
        
def set_boosted_vit_dynamic_inference(boosted_vit: ViT):
    for attn, ff in boosted_vit.transformer.layers:
        attn = attn.fn
        ff = ff.fn
        
        attn.to_qkv.use_cached_channel_attention = False
        ff.net[0].use_cached_channel_attention = False
        
        
class StaticFBS(nn.Module):
    def __init__(self, static_channel_attention):
        super(StaticFBS, self).__init__()
        assert static_channel_attention.dim() == 2 and static_channel_attention.size(0) == 1
        self.static_channel_attention = nn.Parameter(static_channel_attention, requires_grad=False) # (1, dim)
        
    def forward(self, x):
        return x * self.static_channel_attention.unsqueeze(1)


def extract_surrogate_vit_via_cached_channel_attn(boosted_vit: ViT):
    boosted_vit = deepcopy(boosted_vit)
    raw_vit_model_size = get_model_size(boosted_vit, True)
    
    def get_unpruned_indexes_from_channel_attn(channel_attn: torch.Tensor, k):
        assert channel_attn.size(0) == 1, 'use A representative sample to generate channel attentions'
        
        res = channel_attn[0].nonzero(as_tuple=True)[0] # should be one-dim
        return res
    
    for attn, ff in boosted_vit.transformer.layers:
        attn = attn.fn
        ff_w_norm = ff
        ff = ff_w_norm.fn
        
        # prune to_qkv
        to_qkv = attn.to_qkv
        to_q_unpruned_indexes = get_unpruned_indexes_from_channel_attn(
            to_qkv.cached_channel_attention[:, 0: to_qkv.cached_channel_attention.size(1) // 3],
            to_qkv.k
        )
        to_q_unpruned_indexes_w_offset = to_q_unpruned_indexes
        to_k_unpruned_indexes = get_unpruned_indexes_from_channel_attn(
            to_qkv.cached_channel_attention[:, to_qkv.cached_channel_attention.size(1) // 3: to_qkv.cached_channel_attention.size(1) // 3 * 2],
            to_qkv.k
        )
        to_k_unpruned_indexes_w_offset = to_k_unpruned_indexes + to_qkv.cached_channel_attention.size(1) // 3
        to_v_unpruned_indexes = get_unpruned_indexes_from_channel_attn(
            to_qkv.cached_channel_attention[:, to_qkv.cached_channel_attention.size(1) // 3 * 2: ],
            to_qkv.k
        )
        to_v_unpruned_indexes_w_offset = to_v_unpruned_indexes + to_qkv.cached_channel_attention.size(1) // 3 * 2
        assert to_q_unpruned_indexes.size(0) == to_k_unpruned_indexes.size(0) == to_v_unpruned_indexes.size(0)
        to_qkv_unpruned_indexes = torch.cat([to_q_unpruned_indexes_w_offset, to_k_unpruned_indexes_w_offset, to_v_unpruned_indexes_w_offset])
        new_to_qkv = nn.Linear(to_qkv.to_qkv.in_features, to_qkv_unpruned_indexes.size(0), to_qkv.to_qkv.bias is not None)
        new_to_qkv.weight.data.copy_(to_qkv.to_qkv.weight.data[to_qkv_unpruned_indexes])
        if to_qkv.to_qkv.bias is not None:
            new_to_qkv.bias.data.copy_(to_qkv.to_qkv.bias.data[to_qkv_unpruned_indexes])
        set_module(attn, 'to_qkv', nn.Sequential(new_to_qkv, StaticFBS(to_qkv.cached_channel_attention[:, to_qkv_unpruned_indexes])))
        
        # prune to_out
        to_out = attn.to_out[0]
        new_to_out = nn.Linear(to_v_unpruned_indexes.size(0), to_out.out_features, to_out.bias is not None)
        new_to_out.weight.data.copy_(to_out.weight.data[:, to_v_unpruned_indexes])
        if to_out.bias is not None:
            new_to_out.bias.data.copy_(to_out.bias.data)
        set_module(attn, 'to_out', new_to_out)
        
        ff_0 = ff.net[0]
        ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, ff_0.k)
        new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
        new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
        if ff_0.linear.bias is not None:
            new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
        set_module(ff.net, '0', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
        
        ff_1 = ff.net[3]
        new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
        new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
        if ff_1.bias is not None:
            new_ff_1.bias.data.copy_(ff_1.bias.data)
        set_module(ff.net, '3', new_ff_1)
        
    pruned_vit_model_size = get_model_size(boosted_vit, True)
    
    print(f'extract_surrogate_vit_via_cached_channel_attn() | model size from {raw_vit_model_size:.3f}MB to {pruned_vit_model_size:.3f}MB '
          f'({(pruned_vit_model_size / raw_vit_model_size * 100):.2f}%)')
        
    return boosted_vit
    
    
if __name__ == '__main__':
    from utils.dl.common.env import set_random_seed
    set_random_seed(1)
    
    def verify(vit, sparsity=0.8):
        vit.eval()
        
        with torch.no_grad():
            r = torch.rand((1, 3, 224, 224))
            print(vit(r).size())
        # print(vit)
        
        boosted_vit = boost_raw_vit_by_fbs(vit, r=32, k=sparsity)
        set_boosted_vit_sparsity(boosted_vit, sparsity)
        # print(boosted_vit)
        with torch.no_grad():
            r = torch.rand((1, 3, 224, 224))
            print(boosted_vit(r).size())
            
        # set_boosted_vit_inference_via_cached_channel_attentions(boosted_vit)
        r = torch.rand((1, 3, 224, 224))
        boosted_vit.eval()
        with torch.no_grad():
            o1 = boosted_vit(r)
            
        pruned_vit = extract_surrogate_vit_via_cached_channel_attn(boosted_vit)
        pruned_vit.eval()
        with torch.no_grad():
            o2 = pruned_vit(r)
            print('output diff (should be tiny): ', ((o1 - o2) ** 2).sum())
            
        # print(pruned_vit)
        # print(pruned_vit)
    
    # vit_b_16 = ViT(
    #     image_size = 224,
    #     patch_size = 16,
    #     num_classes = 1000,
    #     dim = 768, # encoder layer/attention input/output size (Hidden Size D in the paper)
    #     depth = 12,
    #     heads = 12, # (Heads in the paper)
    #     dim_head = 64, # attention hidden size (seems be default, never change this)
    #     mlp_dim = 3072, # mlp layer hidden size (MLP size in the paper)
    #     dropout = 0.,
    #     emb_dropout = 0.
    # )
    # verify(vit_b_16)
    
    vit_l_16 = ViT(
        image_size = 224,
        patch_size = 16,
        num_classes = 1000,
        dim = 1024, # encoder layer/attention input/output size (Hidden Size D in the paper)
        depth = 24,
        heads = 16, # (Heads in the paper)
        dim_head = 64, # attention hidden size (seems be default, never change this)
        mlp_dim = 4096, # mlp layer hidden size (MLP size in the paper)
        dropout = 0.,
        emb_dropout = 0.
    )
    verify(vit_l_16, 0.98)
    
    # vit_h_16 = ViT(
    #     image_size = 224,
    #     patch_size = 16,
    #     num_classes = 1000,
    #     dim = 1280, # encoder layer/attention input/output size (Hidden Size D in the paper)
    #     depth = 32,
    #     heads = 16, # (Heads in the paper)
    #     dim_head = 64, # attention hidden size (seems be default, never change this)
    #     mlp_dim = 5120, # mlp layer hidden size (MLP size in the paper)
    #     dropout = 0.,
    #     emb_dropout = 0.
    # )
    # verify(vit_h_16)