File size: 6,188 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
print(f'ff input size: {x.size()}')
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
# dim_head: qkv output size of each head
self.inner_dim = inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) # to_q: (embed_dim, num_head, dim_head)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
print(f'attn input size: {x.size()}, to_qkv weight: {self.to_qkv}')
print(self.inner_dim)
qkv = self.to_qkv(x).chunk(3, dim = -1)
print([i.size() for i in qkv])
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
print(q.size(), k.size(), v.size()) # (batch size 2, num_heads 12, num_patches + 1 65, d: dim_head)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
# Attention(Q, K, V) = softmax(QK^T / sqrt(d_k)) * V
out = rearrange(out, 'b h n d -> b n (h d)')
print(f'out: {out.size()}')
res = self.to_out(out)
print(f'linear: {self.to_out}')
print(f'result (out after linear): {res.size()}')
return res
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
self.patch_dim = patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
print(f'raw img: {img.size()}') # (B, c, h, w)
x = self.to_patch_embedding(img) # (B, h*w/p^2, c*p^2) -> (B, h*w/p^2, d)
print(f'raw patch dim: {self.patch_dim}')
print(f'patch embeddings: {x.size()}')
b, n, _ = x.shape # b: batch size, n: # patches
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
print(f'class tokens: {cls_tokens.size()}')
x = torch.cat((cls_tokens, x), dim=1)
print(f'class tokens + patch embeddings: {x.size()}')
# print(self.pos_embedding[:, :(n + 1)].size(), self.pos_embedding.size())
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)
if __name__ == '__main__':
vit_b_32 = ViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024, # encoder layer/attention input/output size (Hidden Size D in the paper)
depth = 12,
heads = 12, # (Heads in the paper)
dim_head = 64, # attention hidden size (seems be default, never change this)
mlp_dim = 3072, # mlp layer hidden size (MLP size in the paper)
dropout = 0.,
emb_dropout = 0.
)
with torch.no_grad():
r = torch.rand((2, 3, 256, 256))
print(vit_b_32(r).size())
import os
torch.save(vit_b_32, './vit_l.pt')
print(os.path.getsize('./vit_l.pt') / 1024**2)
os.remove('./vit_l.pt') |