from transformers import pipeline import gradio as gr # Load a pre-trained image classification model model = pipeline("image-classification", model="google/vit-base-patch16-224") # Define a function for detecting actions def classify_image(image): predictions = model(image) return {pred["label"]: round(pred["score"], 4) for pred in predictions} # Gradio interface interface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), # Accepts image input outputs="json", # Outputs predictions title="Action Classifier", description="Upload an image, and the model will classify actions (e.g., standing, sitting)." ) # Launch the app if __name__ == "__main__": interface.launch(server_name="0.0.0.0")