from transformers import pipeline import gradio as gr # Load a lightweight pre-trained model without specifying cache_dir model = pipeline("image-classification", model="facebook/deit-tiny-patch16-224") # Function to classify an image def classify_image(image): predictions = model(image) # Format predictions as {label: confidence} return {pred["label"]: round(pred["score"], 4) for pred in predictions} # Gradio interface interface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs=gr.Label(), title="Image Classifier Test", description="Upload an image to classify." ) # Launch the app if __name__ == "__main__": interface.launch(server_name="0.0.0.0")