from transformers import pipeline import gradio as gr # Step 1: Load a pre-trained model for image classification model = pipeline("image-classification", model="google/vit-base-patch16-224") # Step 2: Define a function for classifying images def classify_image(image): predictions = model(image) return predictions # Step 3: Create a Gradio interface interface = gr.Interface( fn=classify_image, inputs="image", # Input is an image outputs="label", # Output is a label (e.g., "sitting", "standing") title="Pose Detection: Sitting or Standing" ) # Step 4: Launch the app if __name__ == "__main__": interface.launch()