Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,26 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
print("PyTorch version:", torch.__version__)
|
4 |
-
|
5 |
-
|
6 |
from transformers import pipeline
|
7 |
import gradio as gr
|
8 |
|
9 |
-
#
|
10 |
-
model = pipeline("image-classification", model="
|
11 |
|
12 |
-
#
|
13 |
def classify_image(image):
|
14 |
-
predictions = model(image)
|
15 |
-
|
|
|
16 |
|
17 |
-
#
|
18 |
interface = gr.Interface(
|
19 |
-
fn=classify_image,
|
20 |
-
inputs="
|
21 |
-
outputs=
|
22 |
-
title="
|
|
|
23 |
)
|
24 |
|
25 |
-
#
|
26 |
if __name__ == "__main__":
|
27 |
interface.launch()
|
|
|
|
1 |
+
# Import necessary libraries
|
|
|
|
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Load a lightweight image classification model
|
6 |
+
model = pipeline("image-classification", model="facebook/deit-tiny-patch16-224", cache_dir="./model_cache")
|
7 |
|
8 |
+
# Function to classify an uploaded image
|
9 |
def classify_image(image):
|
10 |
+
predictions = model(image) # Make predictions
|
11 |
+
# Format predictions as a dictionary: Label -> Confidence
|
12 |
+
return {pred["label"]: round(pred["score"], 4) for pred in predictions}
|
13 |
|
14 |
+
# Create a Gradio interface for the app
|
15 |
interface = gr.Interface(
|
16 |
+
fn=classify_image, # Function to call
|
17 |
+
inputs=gr.Image(type="pil"), # Input: Image (PIL format)
|
18 |
+
outputs=gr.Label(), # Output: Label with confidence scores
|
19 |
+
title="Image Classification App",
|
20 |
+
description="Upload an image, and the app will classify it using a vision transformer model."
|
21 |
)
|
22 |
|
23 |
+
# Run the app
|
24 |
if __name__ == "__main__":
|
25 |
interface.launch()
|
26 |
+
|