# 导入所需库 import os from PIL import Image import pandas as pd from transformers import pipeline # 任务 2: 加载预训练模型 # 加载年龄分类模型 age_classifier = pipeline("image-classification", model="nateraw/vit-age-classifier") # 加载性别分类模型 gender_classifier = pipeline("image-classification", model="rizvandwiki/gender-classification") # 加载幸福度分类模型 emotion_classifier = pipeline("image-classification", model="Rajaram1996/Happiness-Classifier") # 任务 1: 定义图像文件夹路径 image_folder = "images/" image_files = [f for f in os.listdir(image_folder) if f.endswith(('.jpg', '.png'))] # 初始化结果列表 results = [] # 任务 3: 处理每张图像并分类属性 for image_file in image_files: image_path = os.path.join(image_folder, image_file) image = Image.open(image_path) # 预测年龄 age_prediction = age_classifier(image) predicted_age = age_prediction[0]['label'] # 预测性别 gender_prediction = gender_classifier(image) predicted_gender = gender_prediction[0]['label'] # 预测幸福度 emotion_prediction = emotion_classifier(image) predicted_happiness = emotion_prediction[0]['label'] # 将结果添加到列表 results.append({ "Image Name": image_file, "Predicted Age": predicted_age, "Predicted Gender": predicted_gender, "Predicted Happiness": predicted_happiness }) # 任务 4: 使用 pandas 生成 CSV 报告 df = pd.DataFrame(results) df.to_csv("participant_classification_report.csv", index=False) print("分类完成,结果已保存到 participant_classification_report.csv")